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ABSTRACT

The stably stratified airflow over a three-dimensional elevated heat source is investigated using the linearized
equations of motion. A low-level upward motion can be produced for airflow over a prescribed, isolated heat
source for a wide variety of mean wind speeds.-Above the heating layer, a V-shaped region of upward displacement
is formed by the action of the mean wind on the upward propagating waves. The horizontal pattern of the l.leat
source is important in determining the formation of the V-shaped region of upward displacement. A high-
pressure region is produced in the vicinity of the heat source at the top of the heating layer. The response qf a
hydrostatic airflow to a transient heating is a V-shaped region of upward displacement with an embedded region
of downward displacement above the heated layer. The whole system advects downstream with a slower speed
than the mean wind and eventually disperses. A region of strong divergence is associated with the region of
upward displacement above the heated layer. In relation to the thunderstorm generated V-shaped clouds, the
cold (warm) area can be explained by the adiabatic cooling (warming) associated with the upward (downward)
displacement. In addition, the upwind displacement of the cold area in the upper level may be explained as a
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gravity wave type phenomenon,

1. Introduction

Curious V-shaped clouds at the top of thunderstorms
have been observed in a number of studies (Adler et
al., 1981; Negri and Adler, 1981; Negri, 1982; Fujita,
1982; Heymsfield et al., 1983a,b; McCann, 1983; Mack
et al,, 1983). A V-shaped cloud is a “V-shaped area
of low minimum equivalent blackbody temperature
(Ts) at the cloud top of a thunderstorm with the “V”

" pointed upwind. Associated with this cold area are
downwind regions of higher T, which may also form
a V-shaped pattern (Fujita, 1982). The major charac-
teristics of the V-shaped clouds may be summarized
as follows: 1) there exist absolute or relative ambient
winds in the upper level; 2) the major cold area and
close-in warm areas are located on the upwind and
downwind edges, respectively, of the high radar reflec-
tivity core; 3) there exists a large temperature difference
between the warm and cold areas which may range
from 7° to 17°C; 4) the high radar reflectivity core of
the storm has considerable upwind tilt with height in
the upper levels; and 5) storms with “V* features are
tropopause penetrating at some time during their life-
time. The V-shaped cold feature and cold-warm cou-
plets have been shown (McCann, 1983; Adler et al.,
1985) to be correlated with. the occurrence of severe
weather. The study of the dynamics of the V-shaped
clouds may improve the severe weather forecasting.

A number of possible explanations of the warm spot
have been proposed: 1) adiabatic warming by the sub-
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sidence of ambient air on the lee side of the cloud dome
(e.g., Negri, 1982; Heymsfield et al., 1983a,b); 2) in-
ternal cloud subsidence on the downwind side in as-
sociation with mixing with the environment (Schlesin-
ger, 1984; Adler and Mack, 1986); 3) subsidence as-
sociated with the cloud top collapsing (Fujita, 1978);
4) mixing of warmer stratospheric air with updraft air
ejected from the cloud dome (e.g., Fujita, 1974, 1982;
Mills and Astling, 1977); and 5) emissivity difference
between the overshooting top of the storm with its
strong updrafts and the surrounding cirrus anvil (Mills
and Astling, 1977). In studying the formation mech-
anism of the V-shaped clouds, Fujita (1978) suggests
that an overshooting top acts to block the wind and
diverts the flow around it. The enhanced-V signature
debris associated with the flow erodes the updraft sum-
mit while being diverted around and past the remainder
of the cloud top. Heymsfield et al. (1983a,b) propose
a conceptual model analogous to airflow over moun-
tains, in which the air parcel experiences an upward
and downward motion when passing over the cloud
dome. This model offers a possible explanation of the
close-in warm area by having the air parcel subside
adiabatically. In order to investigate the dynamics and
the flow structure of the V-shaped cloud in more detail,
it is useful to build up a simple mathematical model
along this line.

To avoid having to treat the details of the thunder-
storm system, we may assume that the latent heat re-
leased by it can be represented by a prescribed heat
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source. This helps to reduce the problem to an airflow
over a prescribed heat source fixed in a moving refer-
ence frame, since absolute or relative ambient winds
always exist in the upper level. This problem is related
to a number of mesoscale problems such as moist con-
vection, heat island problems, sea-land breeze circu-
lations and orographic rain dynamics. The response of
a stably stratified airflow to a prescribed heat source or
sink has been studied theoretically by a number of au-
thors (e.g., Malkus and Stern, 1953; Smith, 1957; Olfe
and Lee, 1971; Raymond, 1972; Thorpe et al., 1980;
Smith and Lin, 1982—hereafter SL; Lin and Smith,
1986—hereafter LS; Raymond, 1986), but in order to
simplify the problem mathematically, only a few have
avoided assumptions such as two-dimensionality.

A corresponding mathematical problem is the air-
flow past an isolated mountain, which has been studied
extensively (e.g., Wurtele, 1957; Crapper, 1962; Smith,
1980). For a stratified hydrostatic flow past an isolated
mountain, the flow aloft is composed of vertically
propagating mountain waves, while the flow near the
ground tends to go around the mountain (Smith, 1980).
The airflow over an elevated heat source may behave
differently. For example, SL found that the phase re-
lationship between the heating and the induced vertical
displacement in a two-dimensional steady flow may
be negative depending upon the location of heating
and the basic flow structure. A similar result has been
found in a study of tropical circulation (Hayashi, 1976).

In this paper, we will investigate the response of a
stably stratified airflow over a three-dimensional iso-
lated heat source with application to the dynamics of
the V-shaped clouds. Using this approach, we can ex-
tend the work of SL and LS to include three-dimen-
sionality. The solution will be obtained numerically by
using a Fast Fourier Transform (FFT) algorithm. Sec-
tion 2 describes the governing equations and the rel-
evant Green’s function. This solution may be used to
study airflow over a shallow heat source. In section 3
the solution will be extended to cases of a deep heat
source with a discontinuous and continuous vertical
profile. The transient response of airflow to a time-
dependent diabatic heating is investigated in section 4.
In these two sections, the solutions are also applied to
explain the formation of the thunderstorm-generated
V-shaped clouds. In section 5, a summary of the results
and some possible extensions of the idealized model
are discussed.

2. The governing equation and the relevant Green’s
function

The small amplitude equation of vertical velocity

for a stratified, incompressible, Boussinesq flow in a

rotating system may be written (Bretherton, 1966)
(D/Dt + v)*V*w— (D/Dt + v) (U W + Vyw)
+NVw+ W, =(g/c,T)Vi?q (1)
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where
D/Dt=a/dt+ Ud/dx+ Vd/dy

V2 = 9%/0x? + 3*/9y> + /82>
Vi = 8/0x* + 8/3y>.

The definition of symbols can be found in appendix
A. The buoyancy frequency (V) is assumed to be con-
stant with height in this study. Notice that » is the coef-
ficient of both the Rayleigh friction and the Newtonian
cooling which have been added into the system to avoid
the problem of net heating in a steady-state flow (SL).
For a steady state flow with no vertical wind shear and
no rotational effect, Eq. (1) becomes

(U8)dx+v)*V*w+ NVPw=(g/c,T)Viiq. (2)
In the above equation, the mean flow is assumed to be
independent of y. To solve Eq. (2), we determine the
relevant Green’s function similar to that in LS. Taking
the double Fourier transform inxand y(x > k, y > [)
of Eq. (2), we have

. [N*—(Uk—iv)*x? gx?

+ b=
Vet T WUk—wye " C,RUk—

o i (3

where « = (k2 + [%)!/? is the magnitude of the horizontal
wave vector.

Consider a bell-shaped heat source with circular
contours

905, ,2) = Qo(r/bY + 1)75(2) @

r= (x2+y2)1/2

Taking the double Fourier transform of Eq. (4) and
substituting into Eq. (3) we get

W+ AW = {gQub /27, T(Uk — iv)*]}e™8(z)  (5)

where
A= [N?2—(Uk— iv)*)" 2k /(Uk — iv).

An appropriate set of lower and upper boundary con-
ditions are w = 0 at z = — H and the radiation condition,
i.e,, w ~ exp(i\z) as z = oo. At the interface z = 0,
one condition is that W is continuous across the inter-
face. Integrating Eq. (5) across the interface yields an-
other condition that w, is continuous. Thus the solution
of Eq. (5) can be obtained

Wik, 1, 2)
_ igQob’ke ™™
4we, T(Uk — iv)[N* — (Uk — iv)’]

. (ei)\(z+2H) — ei)\lzl).

6

The vertical displacement, 5, defined by w = Dy/Dt,
may be written as
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| f ]i 8QobPke b (eN=+2H) — giNA)
n= JJ 4 e, TUK Uk — iv)VN? — (Uk — iv)?

)
X e k]

zz—H .
Now let us introduce nondimensional variables
(&9 =(x/b,yb); (k1,7 = (bk, bl, br);
5=vb/U; (i, z,H)=(uN/U,zN/U,HN/U);;. (8)
Qo = Qugh/(c,TU?)
The unit of Qy is J m kg™' s™! for a vertical heating
profile of Eq. (4). Thus Eq. (7) becomes (the tilde is
dropped)
qﬂ(K)K(ei)\(z+2H) _ eiklzl)

" _f J 2k(k— in)V1 — M(k— vy

e * kgl (9)
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where G(x) = (Qo/27) exp(—«). Notice that the non-
hydrostatic effect is represented by a nondimensional
number M (=U/bN), which is proportional to the ratio
of the period of a buoyancy oscillation (27/N) to the
time it takes for an air parcel to cross the heat source
(b/U). This is similar to the mountain wave problem
in which the horizontal scale is measured by the
mountain width (Smith, 1979). For simplicity, we will
assume the flow is hydrostatic (M < 1) in most cases.
The nonhydrostatic effect will be investigated in section
3. The solution of Eq. (9) may be regarded as an airflow
over a shallow heat source in which the depth of the
heating is much smaller than the vertical wavelength
of the basic flow (i.e., U/N). .

A two-dimensional FFT algorithm is employed to
solve Eq. (9). A summary of the numerical technique
can be found in Smith (1980). Figure 1 shows an ex-
ample of a hydrostatic flow over a shallow heat source
with H = =. The dimensional parameters may be con-
sideredas U= 10m s™!, N=0.01 s"', » = 5 km, and
H = 3.14 km. The response of the fluid to the heating

FIG. 1. Vertical displacement of the hydrostatic flow over an. isolated heat source which is
added at z = 0. The dashed circle is the heating contour at r = b. The basic flow is directed from
left to right in the x direction. The solution is given by Eq. (9) with H = =, M = 0, » = 0.2. The

- four levels shown are (a) —/2, (b) 0, (c) /2, and (d) =.
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at the heating level, z = 0, is a downward displacement
upstream of the prescribed heat source followed by an
upward displacement downstream. This is similar to
the two-dimensional flow as studied in SL. The nega-
tive-phase relationship between heating and displace-
ment can be explained either by an energy argument
or the development of downward displacement near
the heat source which is associated with a region of
growing positive displacement moving downstream
(L.S). The disturbance of the flow at the heating level
is almost confined in the direction perpendicular to the
mean wind.

The region of disturbance widens in general as we
move aloft and beneath the heating level. A V-shaped
pattern in the region of upward displacement forms
above the heating center at the level of z = 7/2. This
region of upward displacement is shifted upstream as
we move further aloft as required by the radiation con-
dition. At the level of z = =, a new region of downward
displacement forms just downstream of the V-shaped
area of upward displacement. The hydrostatic flow is
almost periodic in the vertical with a wavelength of =
(e.g., comparing Fig. 1a, ¢) like that in the mountain
wave theory (Queney, 1947). The amplitude of the
vertical displacement decreases vertically, which is
mainly due to the divergence above the heating region
and the viscosity.

The vertical cross section along the x-axis for the
foregoing case is plotted in Fig. 2a. The upstream
(downstream) phase tilt of the disturbance in the layer
above (below) the heating level (z = 0) indicates that
the wave energy propagates upward (downward)
(Eliassen and Palm, 1960). The term expiN(z + 2H)
in the numerator of Eq. (9) is associated with the re-
flected wave from the ground, which may cancel the
direct upgoing wave, i.e., the term expi)|z|, above the
heating level with some special values of H. This is
similar to the two-dimensional flow (SL). One example
with H = 2= is shown in Fig. 2b in which the distur-
bance above the heating level (z = 0) is much smaller
than the case of Fig. 2a.

Similar to the mountain wave theory (Smith, 1980),
the formation of the V-shaped pattern of the vertical
displacement can be explained by the group velocity
argument. At any height z above the heating level, the
wave energy associated with the forced perturbation is
concentrated near the parabola y* = Nzbx/ U for airflow
over an isolated heat source. At higher aititudes this
parabola becomes wider in the direction perpendicular
to the mean wind and the vertex of the parabola dis-
places farther upstream. The horizontal scale in the y-
direction of the parabola is determined by the buoyancy
frequency N, the speed of the mean wind U and the
horizontal scale of the heat source.

3. Flow over a deep heat source

In the real atmosphere, the regions of latent heating
tend to be distributed in a layer instead of being con-
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centrated at one level, as in section 2. For simplicity,
we first consider a case with heating distributed uni-
formly in the vertical. A more complicated heating
profile will be considered later. The solution can be
obtained by applying the Green’s function method to
the solution of Eq. (9). The result may be written as

o0

_ J‘ o) sm)\z(e’“’——e”‘z) ikt
m k(1= M2(k— iv)?]

dkdl, 0<z<z

e dkd]

_ J‘ J‘ —ig(k)e™(cosAz — cosAz,)
2 k[1~ M(k— iv)’]

4(x) sinAz(e™* — &™) itkoc+1y)
L dkdl,
+H k[ =M~y ©
Z1<2<2Zy
—i§(x)e™(coshz; — cOSAZy) iyerny
= : kdl,

s ” k[ —M2k—i] ¢ )

z,<z. (10)

The heating layer extends from z, to z,. The level z,
may represent the cloud base or the top of the moist
boundary layer where the surface air becomes unstably
buoyant in a cumulus convection (Lindzen, 1974). The
variables are nondimensionalized according to Eq. (8)
except Oy = Qugb/(c, TUN).

a. Vertical motion at the heating base

For prescribed heating as used in this study, it is
important that the vertical motion be consistent with
the heating at the heating base in order to support the

- existing convection. The vertical velocity can be ob-

tained immediately from the dimensional relationship
w = Udn/dx for a steady flow and Eq. (10). In the heat-
ing layer, we have

ff q(K)en\z
1 — M (k-
id(x) sinAz

f f T=aa—wp@ "

Notice that w, is a function of z; and z,. The reciprocal
of (zz — z,) is equivalent to the heat induced Froude
number as defined in LS, which has a dimensional
form of F = U/N(z, — z;).

Figure 3 shows the vertical velocities at the heating
base z, for (z;, z;) = (2, 18), (1, 9), (0.5, 4.5), (0.25,
2.25), and (0.125, 1.125). The dimensional parameters
may be considered as N =0.01s},z, =1km, z, =9

)z(cos)\z coshz, e+ dkd]

eM)e &t Wdled].  (11)
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FIG. 2. (a) Vertical cross section along y = 0 for Fig. 1 (H =),
(b) as in (a) except H = 2x.

km, b= 5km, and U = 5, 10, 20, 40, 80 ms™!. For a
fixed heating depth (dimensional), a smaller z, — z,
corresponds to a higher mean wind speed. In Fig. 3a,
the region of positive vertical velocity has an elongation
in the direction perpendicular to the mean wind. There
are two regions of weak downward motion on the up-

wind and downwind sides. This pattern of vertical ve- -

locity is caused by the advection of the mean wind
since it should respond to the axisymmetric shape of
the heat source in a quiescent fluid. The advection effect
is more significant for cases with larger mean winds
(Fig. 3c-e). In Fig. 3d, e, both regions of downward
and upward velocity extend farther downstream com-
pared with Fig. 3b and 3c and form a V-shaped pattern.
Except for strong winds such as the cases of Fig. 3d
and e, the-vertical velocities are upward in the region
of r < b. An upward motion at low level such as z
= z, may be satisfied for a flow with a wide variety of
the mean wind speeds in the present model. As the
wind speed increases, the heating layer becomes a
heating plane. Thus the vertical velocity field shown
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in Fig. 3e should approach the x-derivative of the ver-
tical displacement field shown in Fig. 1b.

The response of airflow over an elongated or a two-
dimensional heat source is very different from that over
an isolated heat source. To elucidate this point, we
calculate the vertical velocities at the heating base for
a case of an elongated heat source. The width of the
heat source in the y-direction is elongated 20 times
more than that in the x-direction. Figure 4 displays the
vertical velocity at z = z, along the x axis. In the region
of |x| < b, the air parcel may experience either an up-
ward or a downward motion depending upon the

-strength of the mean wind. For example, the air parcel

has a downward velocity upwind of the heating center
followed by an upward velocity for cases of Fig. 4b, d.
The result of the two-dimensional flow of SL is recom-
puted and plotted in Fig. 5 for comparison. For airflow
over a two-dimensional steady heat source, the con-
sistency between the heating and low-level upward
motion can be satisfied only for certain values of the
heating-induced Froude number (Raymond, 1986).

b. Flow response in a hydrostatic atmosphere

Figure 6 shows the vertical displacement for the case
of Fig. 3b; i.e., the heating is distributed uniformly from
zy = 1 to z; = 9. The dimensional flow parameters
considered are N=0.01s"!,z, = 1km, z=9km, b
= 5 km, and U = 10 m s™!. The nondimensional pa-
rameter M in this case is 0.2, which may be in the
weakly nonhydrostatic regime. The nonhydrostatic ef-
fect will be investigated in subsection 3¢. The vertical
velocity at the heating base is shown in Fig. 3b. The
vertical displacement is related to the vertical velocity
by the steady state relationship w = Udn/dx. In the
heating layer, the response of the airstream to the ther-
mal forcing is a downward displacement upstream of
the heating center followed by an upward displacement
downstream. Notice that the phase tilt of the vertical
displacement is not significant in the heating layer. This
may be explained by the equal strength of the heating
rate in the layer. As we move aloft to z = 14 (Fig. 6d),
V-shaped regions of upward and downward displace-
ment are formed and located on the upwind and
downwind sides of the heating center, respectively. The
V-shaped regions are formed by the action of the mean
wind on the direct and reflected upward propagating
gravity waves. )

Figure 7a—c shows the lateral displacement, the lat-
eral velocity, and the perturbation pressure fields at the
level of z = 5 for the case shown in Fig. 6. The equations
for these fields in the Fourier space can be derived from
the basic equations in a hydrostatic atrnosphere (see
appendix B) and may be written

§= % [coshze™2—coshz, €]  (12a)
b=k ¢ (12b)
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p=(~ik(k—in)/)§, for z <z<z,. (12¢)
Again the FFT algorithm is employed to transform
these fields back to the physical space. As an air parcel
to the right of the x-axis approaches the heating region,
it curves to the left first and then to the right imme-
diately after it passes the heating center (Fig. 7a). This
lateral displacement is related to the lateral velocity
field (Fig. 7b) according to a dimensional relationship
of v = Ud{/dx. The lateral velocity field can be ex-

XO

FG. 3. Vertical velocity at z = z; of the hydrostatic flow over a
heat source which is distributed uniformly from z, to z;. The solution
is given by Eq. (11) with M = 0 and » = 0.2. The four cases of
different (z;, z,) shown are: (a) (2, 18), (b) (1, 9), (c) (0.5, 4.5), (d)
(0.25, 2.25), and (e) (0.125, 1.125).

plained by the positive (negative) pressure gradient (Fig.
7¢) in the y-direction upstream (in the vicinity) of the
heating center. Along the x-axis, the air parcel is not
curved because there exists no lateral pressure gradient.
The flow behaves differently from that over an isolated
mountain in which an air parcel curves away from the
Xx-axis upstream of the mountain (Smith, 1980). Notice
that the magnitude of the lateral displacement is almost
one order smaller than that of the vertical displacement
(Fig. 6b). However, the lateral displacement becomes
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FIG. 4. Vertical velocity at z = z; along the x axis for a flow similar
to the case of Fig. 3a-d except the heat source is 20 times wider in
the y direction than in the x direction.

larger for larger mean winds, which may affect the flow
field significantly.

On top of the heating layer, there exists a high pres-
sure region in the vicinity of the heating center (Fig.
7d). This is consistent with observations (Fujita, 1974).
The horizontal pressure gradient of the mesohigh aloft
acts to slow down the air parcel in the vicinity of the
heating center according to the x-component momen-
tum equation”

Uu,=(—1/p)px—vu.

As in the vertical displacement field, the pressure field
(Fig. 7d, e) shows an upstream phase tilt which indicates
an upward propagation of the wave energy. This im-
plies that the vertical transport of the horizontal mo-
mentum is downward (Eliassen and Palm, 1960).

In a region with no thermal forcing such as'z > z,,
the density anomaly is mainly caused by the thermally
generated vertical motion according to the thermo-
dynamics equation (B3) and is related to the vertical
displacement assuming the viscous effect is negligible
(see appendix B): :

p=(oN*/gm.

Thus the V-shaped regions of the positive and negative
vertical displacement shown in Fig. 6d correspond to
the V-shaped regions of cold and warm air, respectively.
In the region of positive (negative) vertical displace-
ment, the cold (warm) air is produced by adiabatic
cooling (warming). The upwind displacement of the

cold region with height (Fig. 6d, €) can then be ex-

plained by the upward propagating gravity waves gen-
erated by the latent heating in a moving airstream.
Figure 8 shows a case similar to the case of Fig. 6
except the heat source is elongated 20 times wider in
the y direction. The vertical velocity at the heating base
is shown in Fig. 4b. Above the heating layer, there is
no V-shaped area of vertical displacement produced,
as opposed to the previous case (Fig. 6). The result
indicates that the horizontal pattern of the heat source

JOURNAL OF THE ATMOSPHERIC SCIENCES

(13)

VOL. 43, No. 22 -

is important for the formation of a V-shaped region of
vertical displacement.

¢. Application to the dynamics of V-shaped clouds

Studies of the Wave-CISK mechanism, in which the
heating is parameterized in terms of the low-level
moisture convergence, indicate that the airflow is sen-
sitive to the vertical profile of the diabatic heating (e.g.,
Stevens and Lindzen, 1978). In this problem with a
prescribed heating, we consider a case here with con-
tinuous heating profile in the vertical:

f(2) = Asin(x(z — 2)/(z5 — z,))e 2F 20

for zy<z<2z2, (14)

=0 for 0<z<z and z>2

where A is a factor for adjusting the vertical integration
of the heating function to be 2(z, —.z;)/= so that the
total heating rate is the same as that for o = 0. A similar
profile has been used for simulating the convective
heating in the problem of tropical circulation (e.g.,
DeMaria, 1985). Similar to the case of uniformly dis-
tributed heating, the nondimensional form of the so-
lution for z > z,, (which we are most interested in)
may be written

_ f j‘ Aé(x)x?rem
") J 2Dk{[1 — Mk = PNk — i)}

et (A—a)D
% [(i)\fa)2+(1r/D)2 (@)

e—i)\zl
" (=ir—a)? +(x/D)

5 (e(—i)\—a)D + 1)

X e dled]  (15)

-086
-6 . [0] 6

FIG. 5. As in Fig. 4 except for a two-dimensional heat source.
The solution is given by Eq. (48) in SL.
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FIG. 6. Vertical displacement of the hydrostatic flow over an isolated heat source whiéh is
uniformly distributed from z; = 1 to z, = 9. The solution is given by Eq. (10) with M = 0 and »
= 0.2. The four levels shown are: (a) 1, (b) 5, (c) 9, (d) 14. )

where
D= 22— Zy.

Figure 9 shows the vertical displacement for a case
with M = 0.2, « = 0, z; = 1 and z, = 9. Notice that
the flow is weakly nonhydrostatic as M is assumed to
be 0.2. The dimensional flow parameters may be con-
sideredas N=0.01s"!,z,=1km,z,=9km,b=5
km, and U = 10 m s™'. At the top of the heated layer
(Fig. 9a) a V-shaped region of upward displacement is
developed and the whole pattern is shifted farther up-
stream compared with the case with uniform heating
(Fig. 6¢) in which there is no V-shaped pattern devel-
oped at the heating top. This is because the gravity
waves generated by the diabatic heating are dominated
by the forcing term near the level of maximum heating
(z = 5). The disturbance also depends on the asym-
metry of the heating profile (i.e., ). At levels of z
= 11.5 and z = 14 (Fig. 9b, c), a V-shaped region of
upward displacement is formed and shifted farther up-
stream.

In application to the dynamics of V-shaped clouds,
the prescribed heating may represent the latent heat

released by the storm, which is fixed in a reference
frame of the storm. Notice that only the latent heat of
condensation in the troposphere is considered since
the latent heat of fusion in the stratosphere is small
and may be ignored. As implied by Eq. (13), the V-
shaped regions of positive (negative) vertical displace-
ment correspond to the cold (warm) area. The ascent
(subsidence) of an air parcel could produce a cold
(warm) area by adiabatic cooling (warming), which is
consistent with the observations (Heymsfield et al.,
1983a).

Downwind of the major V-shaped region of upward
displacement there exist a major region of downward
displacement and a trail of damped oscillations (Fig.
9c). The major region of downward displacement also
appears to have a V-shape. This may correspond to a
V-shaped warm area as sometimes observed (Fujita,
1982). The trail of damped oscillations may not be
visible in the atmosphere if there is no sufficient anvil
cirrus material present. In addition, the disturbance
has a narrower extent in the y-direction than that of
the case of Fig. 6. Similar to the mountain wave prob-
lem, the damped oscillations and the narrower extent
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in the y-direction of the disturbance is mainly caused
by the nonhydrostatic effect. The effect of the contin-
uous heating is the upwind shifting of the whole pattern
at the heating top (Fig. 9a). In the Lahoma storm (storm
B1 in Heymsfield et al., 1983a), there are two warm
areas observed downwind of the major cold area. The

FIG. 7. (a) Lateral displacement, and (b) lateral velocity at z =
5 for the case of Fig. 6. Three levels of the perturbation pressure
field are shown in (¢) z = 5, (d) z = 9, and (¢) z = 14.

close-in warm area moves with the environmental
winds. Furthermore, the trajectories of cold and warm
regions seem to be related to the internal dynamics of
the storm (Schlesinger, 1984; Adler and Mack, 1986).
Subsidence due to collapsing tops may also generate
warm regions (Fujita, 1978). However, the present
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FIG. 8. As in Fig. 6 except the heat source is 20 times wider in the y direction.
The two levels of the vertical displacement shown are (a) 1, (b) 14.

study indicates that the distant warm area may cor- peating of the cold and warm regions may be more
respond to a region of downwind displacement in the pronounced if a more realistic wind profile and strat-
trail if the nonhydrostatic effect is stronger. The re- ification are considered. For example, a trapped wave
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FIG. 9. Vertical displacement of a flow over an isolated heat source according to Eq. (14) with
2z = 110 z; = 9. The solution is given by Eq. (15) with M = 0.2, » = 0.2 and « = 0. The three
levels shown are (a) 9, (b) 11.5 and (c) 14. The divergence at z = 9 is shown in (d).
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downstream, similar to the mountain lee waves, may
occur if the Scorer parameter decreases rapidly with
height (Scorer, 1949).

The divergence field can be calculated from Eq. (15)
and the continuity equation with the steady state re-
lationship w = Udn/dx:

Vi V=FT '[k\n(k, 1, 2)]. (16)

Figure 9d shows the divergence field corresponding to
Fig. 9a at the top of the heating layer (z = 9). The
divergence and vertical displacement fields shown in
Figs. 10 and 11 suggest the existence of a gravity wave
where the fields of divergence and the vertical velocity
are in phase at all levels.

4. Transient response

The time evolution of an airflow over an isolated
heat source can be studied by solving an initial value
problem. This is important because the thermal forcing
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associated with the latent heating of a thunderstorm
cloud is not stationary. The variations of the cold and
warm regions with time are often observed (e.g., Figs.
1 and 2 of Negri, 1982). For a hydrostatic flow with
no vertical wind shear and no rotatlonal effect, Eq. (1)
reduces to

(8/8t+ Ud/ax)*w., + NV tw=(g/c,T)Vi?q. (17)

Notice that the Rayleigh friction and the Newtonian
cooling are excluded in the system since there is no net
heating problem in solving an initial value problem
(LS). First, let us consider a simple case of a pulse of
‘heat in a half plane,

q(t,x,y,2) = Qol(r/by* + 11°%6(2)(t), —H<z. (18)

Taking the Fourier transforfns inx,yandt(t = w)
of Egs. (17) and (18) and following the procedure of
the steady state problem in section 2, the relevant
Green’s function can be found

LI B 2 B o B 4

7

LENLEE S5 0 N B B S S S R

FiG. 10. Time evolution of the vertical displacement atz=2. 78 of a hydrostatic flow over an
isolated heat source which is described by Eq. (21) with z, = 0.28 and 2, = 2.78. The solution is
given by Eq. (22) with @y = 1, a = 0 and 8 = 0.25. The three time steps shown are (a) 0, (b) 2
and (c) 4. The storm center is assumed to be located at Xat ¢ = 4. The dlvergence field corrmpondmg
toc is shown in d. Actual magnitudes are those indicated times 1072
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FIG. 11. As in Fig. 10 except z = 3.89.

i(wt+kx+1y)

= f f f gd(w, K)K(e"‘(z+2H)_ eix|z|)e
! 4xc, TN(w + UkY’

Xdwdkdl, —H<z (19)
where
A =kN/(w + Uk),
G(w, k) = Qob*(872a) ™7 exp(—bx) exp(—w?/4a).

The inverse Fourier transform of w can be performed
leaving

r — b2Akt)V2e~bre—1UK
77=f f £ 2(: ;Nes,/z L 2VkNiz + 2H))/
(4
—o5

(z+2H)"* = J1(2VkNt|2))/|2|'P1e*+Ddkd]  (20)

where J; represents the Bessel function of the first kind
and of order one. Equation (20) reduces to the solution
of LS for a two-dimensional flow. An asymptotic so-
lution of the integrand of the above equation can be
obtained for large time. The response of the fluid to a

pulse of heat is an outwardly moving ring of updraft
in the reference frame moving with the mean wind.
The gravity waves produced by a pulse of heat in an
unsheared flow are axisymmetric about its center and
impart no net momentum flux to the flow. The vertical
displacement associated with the disturbance will reach
a maximum height which is proportional to the max-
imum heating rate added to the flow. Basically the re-
sponse is similar to a two-dimensional flow (LS).

Now let us consider a more complicated heating
function

q(t,x,y,2)
AQol(r/bY* + 1172 sin[x(z — z)/(z2— z1)]

_] Xexpl—a(z—z)] exp(—pB£%) an
for z,<z<z,,

0 for 0<z<z, and z>2z.

The above heating function may represent the latent
heat released by a cumulus cloud lasting for a certain
period. The symbol « is a slope parameter for adjusting
the asymmetry of the vertical profile of the heating and
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B is a slope parameter for the time scale. Similar to the
steady-state problem, the nondimensional form of the
solution for z > z, may be obtained

_ f} J'Aé(w, k, Z)k(r/D)e ™[ ePa(e®=oD 4 1)
. 2w+ k) [(n\ —a)’ + (x/D)

e—iAzl(e(—ix—a)D + 1)
" (=iA— )+ (x/D)?

]e“w'*’““y)dwdkdl (22)

where
d(w, k) = Qo exp(—«) exp(—w?/4), A= x/(w+k).

Solution of the above equation can be obtained nu-
merically using a three-dimensional FFT. Figures 10
and 11 display a case with a = 0, 8 = 0.25, Z, = 0.28
and 2, = 2.78. The corresponding dimensional param-
eters may be considered as z;, = 1 km, z, = 10 km, b
=5km, N =0.01 s"' and U = 36 m s™'. Notice that
the heating starts from ¢ < 0, reaches its maximum at
t = 0, and then decreases to its e-fold value at ¢ = 4.
The dimensional heating e-fold time is 30 min. A rain-
fall rate R lasting for a period of At is associated with
a latent heating at the center of the heat source

Qo =~ wLRAIp,/[2pz2— z1)]. (23)

For R = 1 mm h™! and the latent heat of condensation
L=25X10"%Jkg™', Oy is approximately 7000 J kg™'
for a rainfall period of 1 h. The choice of a nondimen-
sional heating Q, = 1 represents a precipitation rate of
about 27 mm h™! lasting for 1 h. This is not unrealistic
compared to the estimated rainfall rates from radar
echo reflectivity, which may range from 3-5 mm h™'
- for weak cells to 49 mm.h™! for strong cells (Negri and

Adler, 1981).

In the early stages the response of the fluid to the
transient heating is an upward displacement at the top
of the heated layer (Fig. 10a). When the heating reaches
its maximum, i.e., ¢ = 0, the disturbance is still growing,
For waves growing with time, the peak of the upward
displacement propagates downstream with a slower
speed than the mean wind (LS). At ¢t = 2 (Fig. 10b),
the upward displacement has a maximum at x = 0.8,
with a stronger gradient upstream of it. There is a region
of weak downward displacement developed upstream
of the region of upward displacement. This is due to
the compensating downdraft associated with the major
region of updraft. The disturbance develops to a V-
shaped region of upward displacement with two max-
ima and spreads out to a larger region at ¢t = 4 (Fig.
10c). The downstream side of the region of upward
displacement may extend far downstream due to the
advection of the mean wind. The maximum height
(=0.046) becomes smaller as the energy is distributed
to a larger area of the disturbance compared with that
of the earlier time (Fig. 10b). The system is dispersive
and advecting farther downstream as the heating
weakens.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 43, No. 22

Similar to the steady-state problem [Eq. (16)], the
divergence field may be obtained .

V- V=FT [kn(w,k,1, 2)]. (24)

Figure 10d shows the divergence field corresponding
to Fig. 10c. Associated with the region of upward dis-
placement, there exists a region of strong divergence.
This is consistent with the steady state flow as studied
in section 3. Such divergent regions above storms have
been observed (Fujita, 1982; Heymsfield et al.,
1983a,b). Two regions of convergence, located upwind
and downwind of the region of divergence, are asso-
ciated with regions of downward displacernent at a later
time (not shown). A
Moving further aloft to z = 3.89 (Fig. 11), the evo-
lution of the disturbance is similar to that at z = 2.78
(Fig. 10) except there exists a close-in region of down-
ward displacement embedded downwind of the more
pronounced V-shaped region of upward displacement.
The closed-in warm (downward displacement) region
evolves with time (Fig. 11b, ¢), which does not exist at
t = 0. This is consistent with observations (e.g., Figs.
1 and 2 of Negri, 1982). The upstream phase tilt of the
disturbance indicates that there are upward propagating
waves produced by the transient heating. If one assumes
the storm center is located at the maximum of the up-
ward displacement along y = 0 at the top of the heated
layer (denoted by “X” in Fig. 10c), then the close-in
warm area at z = 3.89 (~14 km) is displaced ‘down-
stream about 8 km (x ~ 0.8) while the V-shaped cold
area is displaced upstream about 12 km (x =~ 1.2).
This model may offer an explanation for the large dis-
placement of the cold area upstream to the storm top
and the downstream movement of the ccld and warm
areas. The vertical displacement from the highest to
lowest point at z = 3.89 (=14 km) can be estimated
to be about 220 m (An = 0.06). In the EMC sounding
of the Lahoma storm (see Fig. 2 of Heymsfield et al.,
1983a), the air parcel would be heated to temperatures
12°C higher than the environment by subsiding adi-
abatically 500 m at the level of 14-16 km. For an air
parcel subsiding 220 m in the present case, it would
produce a temperature difference of about 5.3°C higher
than the ambient air. The divergence field at z = 3.89
(Fig. 11d) shows a region of divergence associated with
the region of upward displacement similar to that at z
= 2.78 (Fig. 10d). Notice that there exists a region of
convergence downstream of the region of divergence.

5. Conclusions

1) The response of a stably stratified airstream over
an isolated, prescribed heat source was investigated us-
ing linear theory. The solutions were obtained numer-
ically by the Fast Fourier Transform algorithm. In the
heating layer, the air parcel experiences a downward
displacement upstream of the heating center followed
by an upward displacement downstream. This phe-
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nomenon is similar 10 the two-dimensional flow. Above
the heating layer, a V-shaped region of upward dis-
placement is formed. The formation mechanism of the
V-shaped regions of upward and downward dis-
placement could be explained by the advection of
the mean wind on the upward propagating waves
generated by the latent heating. Similar to the moun-
tain wave theory, the wave energy is concentrated in a
V-shaped region trailing downstream along the parab-
olas y? = Nzbx/U.

2) One interesting finding of this study was that the
vertical velocities at the base of a prescribed isolated
heat source are very different from that of an elongated
or a two-dimensional heat source. The vertical veloc-
ities at the heating base are almost always positive in
the region of r < b for a wide variety of mean wind
speeds. This is because the air is allowed to deflect lat-
erally in passing the three-dimensional isolated heat
source. For prescribed heating as used in this study, it
is important that the vertical motion be consistent with
the heating at the heating base in order to support the
existing convection.

3) The basic pattern of airflow over a heat source
with continuous vertical profile is mainly dominated
by the gravity waves generated from the level of max-
imum heating. It was found that the horizontal pattern
of the heat source is important in determining the for-
mation of the V-shaped region of vertical displacement.
A high pressure region is produced in the vicinity of
the heat source at the top of the heating layer. The
response of a nonhydrostatic flow to a stationary heat
source has a trail of damped oscillations and the dis-
turbance is confined in a narrower region in the direc-
tion perpendicular to the mean wind.

4) The response of a hydrostatic airflow to a tran-
sient heating is a V-shaped region of upward displace-
ment formed upwind with an embedded V-shaped re-
gion of downward displacement above the heated layer.
The region of downward displacement is formed in the
later stages. The whole system advects downstream with
a slower speed than the mean wind and eventually dis-
perses. The transient heating is able to generate upward
propagating waves. A region of strong divergence is
associated with the region of upward displacement
above the heated layer.

5) When applied to the dynamics of V-shaped
clouds, the cold (warm) area above a thunderstorm is
explained by the adiabatic cooling (warming) associated
with the upward (downward) displacement. The up-
wind displacement of the cold area in the upper level
might be explained by the upward propagating gravity
waves generated by the latent heating from the middle
and lower layers in a moving airstream. The movement
of the whole system in the direction of the mean wind
is consistent with the observations.

6) The model in this paper may be extended to in-
clude a more realistic heating parameterization and
stratification, nonlinearity, wind shear, and rotation.
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This will allow one to compare the theoretical results
with observations, such as the horizontal scale sepa-
ration between warm and cold regions, temperature
differences, the width of V-shaped clouds, etc., in more
detail. To include such factors, a numerical model
might be necessary. .
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APPENDIX A
List of Symbols
b width of the heat source
¢ specific heat capacity at constant pressure
D depth of the heating layer (z; — z))
f Coriolis parameter
F heat-induced Froude number defined as
U/N(z; = zy)
FT! inverse Fourier transform
g gravitational acceleration
H depth of the ground to the shallow heating
level
Ji Bessel function of the first kind and of
order 1

wavenumber in x direction

wavenumber in y direction

latent heat of condensation

parameter of the nonhydrostatic effect de-
fined as U/bN

Brunt-Viisila (buoyancy) frequency

perturbation pressure

heating rate per unit mass

amplitude of heating function

radial distance from the origin

rainfall rate

time

incoming temperature

incoming velocity in x direction

lateral velocity

incoming velocity in y direction

perturbation horizontal wind

vertical velocity

downstream coordinate

lateral coordinate

vertical coordinate

base of the heating layer

top of the heating layer

slope parameter of heating function in z di-
rection

Q@B“**E<<¢q~h“w‘t¢o~=ﬁz LAt



2750

slope parameter of heating function in time
Dirac delta function

lateral displacement

vertical displacement

horizontal wavenumber

perturbation density

incoming density

Pa density of dry air

Pw density of liquid water

VIV R P ey O

v coeflicient of Rayleigh friction and Newto-
nian cooling
w wave frequency

V2. Laplacian operator
horizontal Laplacian operator

APPENDIX B

To derive the equations for lateral displacement, lat-
eral velocity, perturbation pressure, and perturbation
density, we may consider the momentum equation in
the y-direction, the hydrostatic equation and the ther-
modynamic equation:

ve=—(1/p)py— v (B1)
pg=—": (B2)
Upx—(pN*/gw=—(p/c, T)g—vp. ~ (B3)

Makmg the double Fourier transforms of the above
equations, we have

p(Uk—iv)o=~Ip (B4)
;’g =—p; (B5)
(kU= iv)p — (pN*/g)W = —(p/c, T)q4. (B6)

With the relationships of w = U d»/dx and v = U 3¢/
dx, these equations may be reduced to obtain.

NY gl R
KUk—) T G iuk—mpd B

In the heating layer for flow over a deep heat source,
¢ may be integrated from z to +oo,

-

. N & *
§.=_ik(_Uk—:t—u)U; naAk, l,Z')dz'-i-J; m(k,l,z")dz']
Wf 4(k,1,2')dz". (B8)

Assuming the vertical displacement at infinity is zefo
and substituting Eq. (10) into (B8), we have

.Gl

= T [cosAze™?2 — coshz,e™].

Notice that Eq. (B9) is nondimensionalized. The
relationship between v and ¢ can be derived by v
= Ud¢/dx, which leads to the nondimensional form

= ik¢. (B10)

(B9)
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The nondimensional pressure field can be obtained
by Eqgs. (B4) and (B10)

p=(—ik(k— iv)/)}. (B11)

Above the heating layer, there exists no thermal
forcing. Thus the homogeneous part of the thermo-
dynamic equation [Eq. (B6)] may lead to .

=[pN?k/g(kU— iv)]3. (B12)

If the viscous effect is neglected, the above equation
reduces to Eq. (13).
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