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ABSTRACT

Inertial and frictional effects on stratified hydrostatic airflow past an isolated warm region are investigated
by linear theories. For an inviscid quasi-geostrophic flow, there exists in the lower layer upward motion upstream
and downward motion downstream of the warm region. The vertical velocity field is in phase with the diabatic
heating and cooling. As expected, regions of high buoyancy, low pressure and positive vorticity are produced
in the vicinity of the warm region. Strong vortex stretching occurs near the center of the warm region, accompanied
by two regions of weak vortex compression upstream and downstream. With the inertial effects included, the
vertical motion and the vorticity are strengthened. The horizontal wind experiences a much stronger cyclonic
circulation near the diabatic source.

For a flow with a larger Rossby number O(1), the advection effect of the basic flow is dominant. U-shaped
patterns of disturbance are pronounced, which are associated with the upward propagating inertia-gravity waves.
The wind is deflected cyclonically around the region of positive relative vorticity and is advected downstream
of the center of the warm region, rather than around the region of the low pressure.

The frictional effects are investigated by the addition of an Ekman friction layer to a quasi-geostrophic flow.
There are three significant features of the disturbance: (i) an upstream-downstream asymmetry, (ii) an upstream
phase tilt in the lower layer, and (iii) weakening of the positive relative vorticity and low pressure. Items (1)
and (ii) are explained by the upward motion and vorticity and the advection of the basic flow on the disturbance
induced by the Ekman friction. The weakening of the positive relative vorticity and the low pressure can be
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explained as the spindown process of the interior flow to the Ekman friction.

1. Introduction

The theoretical problem of a stratified flow over a
prescribed diabatic heating has received considerable

attention in the last three decades. One of the earliest

work is by Malkus and Stern (1953) on a two-dimen-
sional flow over a heat island 10 km in width and nor-
mal to the basic flow. Unfortunately, they used an in-
correct upper boundary condition in their calculations
as pointed out by Olfe and Lee (1971) and Smith and
Lin (1982). The heat island problem has been pursued
further by some other authors (e.g., Smith 1957; Olfe
and Lee 1971). This type of study has been applied to
a number of different mesoscale phenomena, for ex-
ample: (i) low-level heating and cooling associated with
a long ridge (Raymond 1972), (ii) latent heating as-
sociated with a thunderstorm downdraft (Thorpe et al.
1980), (iii) latent heating associated with an upslope
orographic rain (Smith and Lin 1982; Davies and Schar
1986), and (iv) latent heating associated with moist
convection (Lin and Smith 1986; Lin 1986, 1987;
Raymond 1986). Thus, this type of study appears to
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be helpful in improving our understanding of various
mechanisms related to mesoscale dynamics.

Theoretical studies incorporating prescribed thermal
forcing has also been applied to large scale flow. One
of the earliest works is by Smagorinsky (1953) who has
studied the steady, linear response of a large-scale flow
over a prescribed, periodic heat source and sink asso-
ciated with the temperature contrast of continent versus
ocean. Both baroclinicity and frictional effects have
been investigated by using a 8-plane approximation.
The linear response of large-scale flow to tropical ther-
mal forcing has been investigated by Webster (1972),
Gill (1980), Geisler (1981) and DeMaria (1985) among
others. The Walker circulation, which exists to the east
of tropical heat sources near the maritime continent,
has been explained as the effects of the surface and
elevated heating over the continent. Similar approach
has also been applied to investigate the midlatitude
response to tropical thermal forcing (e.g., Hoskins and
Karoly 1981; Simmons 1982; Lim and Chang 1983).
Those works, either use a 3-plane approximation or
include the B effects, are mainly for studying heat
sources and sinks of planetary dimensions which pro-
duce large-scale disturbances.

For a flow over a diabatic source/sink with a hori-
zontal scale of several hundred kilometers, the rota-
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FIG. 1. Inviscid quasi-geostrophic flow over a beli-shaped warm region with the maximum perturbation potential temperature (75) and
the half-width (a) of 7.5 and 1, respectively. The parameters associated with the basic flow are: Ry = 0.2, ¥ = 0.2, E = 0. Six horizontal
fields at z = 0.05 are shown: (a) vertical velocity, (b) buoyancy, (¢) perturbation pressure, (d) relative vorticity, (¢) horizontal vector wind,
and (f') divergence. Three cross sections of y = 0 are shown: (g) vertical velocity, (h) vertical displacement, and (i) perturbation pressure.
The thick dashed lines in (a) and (e) indicate the contour of 7 = 4. Notice that all variables are nondimensionalized.

tional effect plays an important role in generating in-
ertia-gravity waves. Those waves behave differently
from quasi-geostrophic planetary waves which are

generated by a forcing, either thermally or orographi-
cally, with a horizontal scale of several thousand ki-
lometers. In other words, the S-effect can be neglected,
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FIG. 1. (Continued)

but the initial effect should be included in this type of
flow. Sea breezes generated by coastal differential heat-
ing and lake effects associated with diabatic heating in
winter are two examples. By prescribing an isolated,
diabatic heat source/sink, Rotunno (1983) has inves-
tigated the horizontal scale of the land and sea breeze

circulation theoretically. Using a similar approach, Hsu
(1987a) has studied the two-dimensional flow response
to a prescribed, finite surface heating with thermal dif-
fusion included. The horizontal scale of heating varies
from 1 to 1000 km. This work has been extended nu-
merically (Hsu 1987b) to include the three-dimen-
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sionality and apply to the snowstorm problem of
Lake Michigan. Some interesting results have been ob-
tained by Hsu by varying the shape of the diabatic
heating and the basic wind directions. However, the
energy propagation of the heating-induced inertia-
gravity waves has not been emphasized, which need to
‘be investigated for a better understanding of the dy-
namics.

A corresponding mathematical problem, which has
been studied by several authors (e.g., Smith 1980), is
the airflow past a three-dimensional, isolated mountain
with no rotational effects included. With rotational ef-
fects included, a leftward (in the Northern Hemisphere)
deflection of the air is observed as it approaches major
mountain ranges such as the New Zealand Alps, Ice-
land and Central Mountain Range of Taiwan (Smith
1982). Based on a power series expansion in the Rossby
number, Buzzi and Tibaldi (1977) have investigated
the inertial and frictional effects on rotating and strat-
ified flow over an isolated topography. They found that
the disturbance associated with orographic forcing be-
comes asymmetric in the front-rear direction, gener-
ating a long tail of positive relative vorticity to the lee
side of the mountain, with the addition of an Ekman
layer in a quasi-geostrophic flow. An increase in po-
tential vorticity is produced because the anticyclonic
vorticity above the mountain tends to decay due to
friction. In applying the theory to the flow over and
around the Alps, their results are consistent with the

. observed high-low pressure pattern. Howevér, it is not
clear how the flow responds to an isolated thermal
forcing under a similar situation since the airflow may
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behave differently, as found in some diabatic heating
simulations in a nonrotating flow (e.g., Smith and Lin
1982; Lin and Smith 1986).

The problem of a stratified hydrostatic airflow past
an isolated warm region will be investigated by a linear
theory. Analytical solutions will be obtained in the
Fourier space and transformed back to the physical
space by a Fast Fourier Transform algorithm. Section
2 describes the governing equations. The response of
a quasi-geostrophic inviscid flow past a bell-shaped
warm region is then presented in section 3. The inertial
effects and the frictional effects are investigated in sec-
tions 4 and 5. Concluding remarks are made in the last
section.

2. Governing equations

The steady-sfate, small-amplitude equations for. a
stratified, hydrostatic, Boussinesq flow in a rotating
system may be written

Uiy — fo''= —m's 8y
Uy + fu' = -7, )
= b' A3)
Uy + 0y + Wy =0 4)
Ubj: + N*w' = (g/¢, T)q’ (%)
where
u' perturbation velocity in the x-direction

v’ perturbation velocity in the y-direction
vertical velocity

«  perturbation kinetic pressure (p /po)

b’ perturbation buoyancy (2¢/6o)

U hbasic state velocity in x direction

by basic state buoyancy

po Dbasic state density

basic state temperature

Brunt-Viisili frequency ((dby/dz)"/?)
Coriolis parameter '
gravitational acceleration

specific heat capacity at constant pressure
heating rate per unit mass.

QO RSN

The incoming velocity (U) and the Brunt-Vaiisiili fre-
quency (N) are -assumed to be constant with height
throughout this study. The set of Egs. (1)-(5) can be
nondimensionalized

Rou, — v+ m, =0 (6)
Rov, +u+m, =0 @)
m,—b=0 ®8)
U, +v,+Row, =0 9)
be+tw=g (10)
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where Ro = U/ fa is the Rossby number. The hori-
zontal scale, a, is chosen to be the half-width or the
scale of the heat source. The nondimensional variables
are defined as following:

(x,y)= (xX'/a, y'/a);
(u,v) = (u'/U,v'/U);

z = z'/Hy;,

w = w'a/(RoUH,);
= a/(fUa); b = b'gHo/(fboUa);
q = q'gHo/(c,TUf). (11)

In the above equations, a deformation depth (e.g., see
Buzzi and Tibaldi 1977; Pierrechumbert and Wyman
1985), Hy = fa/N, has been adopted.
Equations (6)-(10) can be reduced to a single equa-
tion of pressure by making the quasi-geostrophic ap-
proximation, i.e. retaining the zeroth and first orders
of the expansion in powers of Ro (for details, see Ped-
losky 1982) :
a 2
. (7rz: + VH 7") = g:. (12)
ox

The lower boundary condition, with Ekman friction

(Charney and Eliassen 1949) included, over a flat sur-
face requires

o ij_ ' 4 r— 1 1/2 !
v =(w)e+ (e = 3 220
at z’=0 (13)

where E = v/(fHy?) is the Ekman number and ¢’ is
the vertical component of the relative vorticity (Eq.
(26)). The nondimensional form of (13) can be written

7+ [(EV?/2)/Ro]{=q at z=0. (14)
For a low-level thermal forcing we assume
q'(x',y, 2') = h'(x', y")e =™, (15)

where h'(x’, y') is the horizontal distribution of the
heating and H, is the e-fold depth of the heating. The
above equation can be expressed in nondimensional
form '

q(x, y, z) = h(x, y)e™*/”

-where ¥ = H,/H, = NH,/ fa is the aspect ratio of the
heating depth to the vertical scale of the flow.
To solve the problem, we make the double Fourier

transform in x and y (x = k, y — [) of Egs. (12), (14) .

and (16),
. — K% = —(h/ivk)e /" 17)
1/2 g2 i ~2zf{y
%,—(%ioﬂf );r=h(k’:]ze at z=0. (18)

The relationship between pressure and vorticity, Eq.
(24), has been used in deriving Eq. (18).

YUH-LANG LIN
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The general solution of Eq. (17) can be written

hye™*/"
ik(1 — v?K?) °

7 = Ae X + BeX — (19)
The upper boundary condition requires = = 0, which
implies B = 0. After applying the lower boundary con-
dition (18), the solution in the Fourier space can be
obtained .

(E'%/2)(1 — vK)
Roik + (E"2/2)K]

A
T =

hy
(1 — vK?) [K["
X e K — e'z/"] . (20)

Other variables are related to = by the following re-
lationships:

=-—m:t+gq, 21)
U= -y, (22)
V= Ty, 23)
'Y = V11271', (24)
8= Ro(me: — 42), 25)
where
{=v,—u, (the vertical component
of the relative vorticity) (26)
6 = u, + v, (the horizontal divergence). 27N

Making Fourier transforms of Eq. (21) and using Eq.
(20), the nondimensional form of the vertical velocity
can be found

fzﬂ/K2 i
| |77

" (E'2/2)(1 — 'YK)] Kz
w=

Roik + (E?/2)K|°

- 'ye""’] . (28)

Other variables can then be found from the Fourier
transforms of Eqgs. (22)-(25) and .

For simplification, the perturbation potential tem-
perature associated with a warm region due to low-
level sensible heating is assumed to be a bell-shaped
function such as

Ty -
(r*/a* + 1)
where r'? = x'? + y'2, To the first approximation, the
diabatic heating rate associated with the above specified
warm region in a basic flow (U) can be specified as

q Db aT' (Nzoo) ,
S==—=U—+ W',
ox

¢ Dt
As discussed in Stern and Malkus (1953), the diabatic
heating rate is mainly created and maintained by hor-

T'(x,y)= (29)

(30)
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FIG. 2. As in Fig. | except with inertial effects included. Solutions can be found in Eqgs. (36)-(45).

izontal temperature advection due to small-scale tur-  After making Fourier transforms of (29) and (31), the
bulence, and is not altered significantly by convective nondimensional form of the diabatic heating rate can

motions of the scale of w'. That is, (N%/g)w’' < UdT'/ be written
dx’. Thus, the boundary value of ¢’ is simply related

to the horizontal temperature advection, ~h(k, 1) = iToke™ /2x.

(32)

g, y,0)= h’(x_’, ') =¢,UdT’/3x'. (31) Substituting Eq. (32) into Eqgs. (20) and Eqgs. (21)-
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F1G. 2. (Continued)

(25) in Fourier space, the variables #, W, , , { and
4 can be solved analytically in the Fourier space. Closed
forms of the solution in the physical space are possible
but tedious. Instead, the inverse Fourier transform is
performed numerically by an algorithm of Fast Fourier
Transform (FFT). A brief summary of the FFT scheme
may be found in Smith (1980).

v

3. The quasi-geostrophic inviscid flow

Figure 1 shows a case of the quasi-geostrophic in-
viscid flow over an isolated warm region. The warm
region is assumed to have a bell shape with the maxi-
mum temperature and the half-width of 7.5 and 1,
respectively. The basic airflow blows from the left to
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the right. Therefore, there exists a heating (cooling)
upstream (downstream ) of the center of the warm re-
gion according to Egs. (16) and (30). Both Ro and y
associated with the flow have a value of 0.2. The di-
mensional parameters may be considered as U = 10
ms ! a=50km,f=10"*s", N=0.01s"", H
= 1 km, Hy = 5 km, and 7'y = 20°C. The response of
the fluid to the heating and cooling associated with the
warm region at z = 0.05, corresponding to a dimen-
sional height of 250 m, is an upward (downward ) mo-
tion upstream (upward) of the center of the warm re-
gion (Fig. 1a). Upstream (downstream ) of the region
of upward (downward) motion, there exists a region
of weak compensating downward (upward) motion.
In fact, the vertical velocity field is in phase with the
diabatic heating. The thermal forcing produces a region
of high buoyancy (less dense) air in the vicinity of the
warm region (Fig. 1b), which then produces the low
~ pressure region near the surface (Fig. 1c) according to
the hydrostatic balance. On both upstream and down-
stream sides of the region of high buoyancy and low
pressure, there exist regions of weak low buoyancy and
high pressure, respectively. These are associated with
the weak compensative vertical displacements as dis-
played in Fig. 1h for a cross section along y = 0. At
this level (z = 0.05), the fluid parcel experiences a
cyclonic circulation near the center of the low pressure
region where there exists a cell of positive relative vor-
ticity (Fig. 1d and le). Two regions of weak negative
vorticity appear to be on both upstream and down-
stream sides of the positive vorticity. Notice that the
relative vorticity reaches a maximum of about 0.6 f,
which is relatively high for a quasi-geostrophic ap-
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proximation to be valid. Figure 1f shows the divergence
field at z = 0.05, which has a convergence (divergence)
upstream {downstream) of the center of the warm re-
gion. The divergence field is related to the vertical mo-
tion by the relationship 6§ = —w,.

Figure 1g-i displays the vertical cross sections of the
the vertical velocity, vertical displacement and pertur-
bation pressure along y = 0. Both fields show a sym-
metric pattern with respect to the line of x = 0. The
vertical velocity field (Fig. 1g) near the warm region
center is mainly dominated by an upward motion up-
stream followed by a downward motion. The absolute
value of the vertical velocity increases with height until
z = (.2 and then decreases. Weak compensative down-
ward and upward motions are found far upstream and
downstream, respectively. The air parcel is lifted near
the center of warm region and displaced downward
slightly far upstream and downstream (Fig. 1h). The
vertical displacement field also indicates that there exist
a strong vortex stretching near the center of the warm
region and two regions of weak vortex compression far
upstream and downstream. The pressure disturbance
(Fig. 1i) is almost confined below the e-fold depth of
the heating, i.e. z = 0.2. Near the warm region center,
the perturbation pressure decreases exponentially with
height and reverses its phase at a level of about z = 0.35.
The resulting region of high pressure is associated with
the compensative divergence at this level, instead of
convergence at lower levels. The amplitude of the per-
turbation pressure decays exponentially with height as
also can be detected from the solution, i.e. Eq. (20).

4. Inertial effects

Equations (6)-(10) can be combined to a single

equations of w,
Rozwxx:: + W + VHZW = v}lzq- (33)

Making Fourier transforms of the above equation and
Eq. (16) gives

. K> . hK’e"
, Vet R 1Y TRoe o1 Y
The general solution of Eq. (34) can be written
W = AeiKe/(Rok2-1))2 | p,—iKz/(Ro%k?-1)!/2
2K2he~?/"
! (35)

+ vK* + (Ro%*k?*—-1)"
The lower boundary condition requires w = 0 at z = 0.
The solution composes two parts: (a) Ro%k? > 1 and
(b) Ro%k? < 1. For Ro%k? > 1, the upper boundary
condition requires B = 0 to radiate the energy upward
to infinity. With the lower boundary condition applied,
the solution may be written

’_’Ysz;l

[eil<z/(Ro2k2—|)'/2
(Ro’k?* — 1) + ¥?K?

W= — e/,

for Ro%?>1. (36)
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For Ro%k? < 1, the general solution can be written
W= Aex:/(l—kozkz)'ﬂ + Be—Kz/(l—R02k2)1/2
v2K2he "
v2K? + (Ro%k?*—-1)°
The upper boundary condition requires the solution

to vanish at infinity. Thus it implies that 4 = 0 and
the solution reads

v2K*h [
(1 - Ro%k?) — v°K* ¢

(37

~K: 1-R 2k2 172 -
z/(1-Ro%5) V% _ o 2/7]’

W=

for Ro%2<1. (38)

The other variables can be obtained from the Fourier
transforms of Eqs. (6)~-(10),

l «© ©
r=— vdz — ~z/y
1r ik“:. wdz J; he , dz], (39)

. _Ro%*%*-il,

E=T-Ro2™ (40)
_ k(Rol + i) ,

2= T Rot2 ™ @1

T l A Py

b= ;7( (g —w). 42)

The analytic forms of 7 are
—hy(Ro%k? — 1)/

A _ v K iKz/(Ro2k2-1)1/2
= RK + (R — Dy LYKe

+ (Ro%k? — 1)2e7#/7], Ro%*?2>1 (43a)
= irY(l - Rozkz)llz [‘YKe—l(;'/(l-—Rozkz)]./2

ik[(1 — Ro%k?) — v2K?]
— (1 — Ro%k?)/2¢7/7], Ro%?*< 1. (43b)

The vorticity and divergence can be derived from the
definitions (26) and (27), '

(44)
(45)

Notice that the second order of the expansion in powers
of Ro enters in the formula of the relative vorticity.
Figure 2 shows a case similar to that of Fig. 1 except
with the inertial terms included. Compared with the
quasi-geostrophic case, the vertical motion near the
diabatic source is strengthened and there exists dis-
persed disturbances downstream (Fig. 2a and 2g). The
maximum amplitude of the downward vertical velocity
is more than double value of the quasi-geostrophic case.
This is mainly caused by the advection effect. The ver-
tical cross section along y = 0 (Fig. 2g) indicates that
the vertical extent of the vertical motion is much
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smaller than that of the quasi-geostrophic case. This
can be explained by the smaller e-folding depth of the
vertical motion, (1 — Ro?k?)!/2/K from Eq. (38),
compared with that of the quasi-geostrophic case, 1/
K from Eq. (28). The buoyancy and pressure fields
(Fig. 2b, c and i) are very similar to that of the quasi-
geostrophic case with only slight differences in ampli-
tudes. The vorticity field is much stronger than the
previous case, with a maximum increased by a factor
of 1.5 and a more compact horizontal extent. By com-

paring Eq. (44) and the Fourier transform of Eq. (24),

the difference of the vorticity fields is caused by the
inertial effects, i.e. the second term of Eq. (44). The

- vertical gradient of the vertical velocity is large for the

present case because of the smaller vertical extent of
the vertical motion as mentioned earlier. This tends to
strengthen the vorticity field. Associated with the
stronger vorticity near the diabatic source region, the
horizontal wind field shows a stronger cyclonic circu-
lation. The compact and wavy structure, similar to the
vertical velocity field, also appears in the vorticity, di-
vergence, and vertical displacement fields. The up-
stream phase tilt of the vertical velocity and displace-
ment fields indicates an upward propagation of the in-
ertia~gravity waves, even though it is weak for such a
small Rossby number flow.

Figure 3 shows a case of an inviscid flow with Ro
= | past an isolated warm region. The parameters as-
sociated with the flow and the diabatic source/sink are
¥ = 1.0 and T, = 1.5. The dimensional parameters
may be considered as U = 10 m s™!, ¢ = 100 km, f
=10"4s", N=0.01s5"", Hy=1km, H, =1 km,
To = 4°C. The response of the fluid to diabatic heating
at z = 0.25, corresponding to z’ = 250 m, is an upward
motion upstream and near the center of the warm re-
gion followed by a downward motion downstream (Fig.
3a). Compared with the quasi-geostrophic case, the
major regions of upward and downward motion are
shifted downstream. This can be explained by the ad-
vection effect because the inertial terms, i.e. the Ro
terms, of Eqs. (6)-(7) cannot be neglected in the pres-
ent case. Even though not shown in Fig. 3a, there still

. exists a weak compensative downward motion asso-

ciated with the major region of upward motion (Fig.
3g). The horizontal pattern of the vertical velocity is
more asymmetric in the basic wind direction than that
in the quasi-geostrophic case. The buoyancy field (Fig.
3b) is similar to that of the quasi-geostrophic case, ex-
cept there exists a region of high buoyancy (less dense)
air far downstream. The major region of high buoyancy
near the center of the warm region is mainly produced
by the diabatic heating and cooling. The indirect effect
on the buoyancy due to vertical motion [Eq. (10)] is
not pronounced at such a low level because the vertical
velocity is weak near the surface.

The perturbation pressure pattern (Fig. 3c) is no
longer similar to the perturbation buoyancy pattern as
that of quasi-geostrophic case. This is mainly caused
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FIG. 3. As in Fig. 2 except with a larger Rossby number. The parameters used are: 7o = 1.5,2=1,Ro=1,and y = 1.
The horizontal fields plotted are at z = 0.25. The thick dashed lines in (a) and (e) indicate the contour of T = 0.8.

by the vertical propagation of the thermally induced nounced in other fields, is an indication of the upward
inertia-gravity waves. In fact, the pressure field is al- propagation of energy as shown in a nonrotational
most out of phase with the buoyancy field. The U- mountain wave problem (Smith 1980) and in a non-
shaped pattern of the perturbation pressure, also pro- rotational diabatic heating problem (Lin 1986). The
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FIG. 3. (Continued)

group velocity calculation of Smith can be extended
to include the Coriolis force (see Appendix), which
gives the concentrated region of the wave energy

. zI*(Ro%k? — 1)!7?
V= k@®or =+ By [*
Ro%*?* = 1.

(46)

With no rotation, the above equation reduces to the
formula derived by Smith. With rotational effects in-
cluded, the wave energy is still concentrated near the
parabola described by Eq. (46). However, the latus
rectum becomes larger compared to the nonrotational
case. Also, Eq. (46) indicates that only the wave part
of the disturbance contributes to the upward propa-
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gation of the energy. Therefore the U-shape is less pro-
nounced for a flow with smaller Rossby number. An-
other evidence of upward propagation of wave energy
is the upstream phase tilt as shown in the cross section
of y = 0 (Fig. 3i). The regions of maximum and min-
imum perturbation pressures are shifted farther down-
stream with height, which indicates that the wave en-
ergy is propagated upward and advected downstream.
There is a negative vorticity center just upstream of
the center of the warm region followed by a strong
positive vorticity center just downstream and a negative
vorticity center far downstream (Fig. 3d). The signif-
icant difference from the quasi-geostrophic case is that
the positive (negative) vorticity is associated with the
high (low) pressure, and not the low (high) pressure.
The positive vorticity field is no longer in phase with
the low pressure because the vertical velocity term is
as important as the pressure term in Eq. (44) for a flow
with a larger Rossby number. Due to weaker rotational
effect, the vector wind does not deflect as strongly as
for the quasi-geostrophic case. However, the cyclonic
flow around the region of positive vorticity, not the
low pressure, is still evident in this case (Fig. 3e). The
divergence field is related to the vertical velocity field
by Eq. (45) (Fig. 3f). A region of convergence near
the center of the warm region is accompanied by two
regions of divergence upstream and downstream. Fig-
ure 3g-i shows the cross sections of the vertical velocity,
vertical displacement, and pressure along y = 0. The
major difference from the quasi-geostrophic case is that
the phase tilts upstream with height. The perturbation
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pressure field is roughly in phase with the vertical ve-
locity, which indicates that the wave energy is pro-
pagated upward because the vertical energy flux,
J p'w'dx, is positive (Eliassen and Palm 1960; Jones
1967).

5. Frictional effects

To investigate the frictional effects of a quasi-geo-
strophic flow past an isolated warm region, a case sim-
ilar to that of Fig. 1 with the addition of an Ekman
layer is investigated. The lower boundary condition
(13) is applied at z = 0 instead of at the top of the
Ekman layer. This can be considered as a linear ap-
proach by assuming the Ekman layer is very shallow.
The Ekman number is assumed to be 0.01, while other
parameters are kept same as that of Fig. 1. Compared

‘with the inviscid case, the upward motion is signifi-

cantly strengthened, while the downward motion is
only slightly strengthened (Fig. 4a). The regions of up-
ward and downward motion are displaced further
downstream compared with the inviscid case. This
downstream displacement is associated with the up-
stream phase tilt occurs in the lower layer as shown in
the cross section (Fig. 4g). Another significant differ-
ence is the upstream-downstream asymmetry, which
also occurs in other fields at z = 0.05,

The low-level upstream phase tilt is consistent with
that of Smagorinsky (1953) who investigated a diabatic
heating problem with 8 effects and baroclinicity in-
cluded, and the upstream-downstream asymmetry is
similar to that of Buzzi and Tibaldi (1977) for a moun-
tain wave problem. These two phenomena are related
by the following argument. At z = 0, the maximum
positive vorticity is located right at the center of the
warm region as can be seen from the inviscid case (Fig.
1d). According to the lower boundary condition (13)
associated with the Ekman friction, the maximum up-
ward motion will be shifted from the upstream in the
interior fluid to the center of the warm region at the
top of the Ekman layer (z = 0). Thus there exists an
upstream phase tilt with height in the lower layer. The
disturbance associated with the upward motion is then
advected by the basic wind, which gives the asymmetric
pattern of the vertical velocity. This upstream-down-
stream asymmetry also appears in the other fields such
as the buoyancy, pressure, vorticity, and divergence
(Fig. 4b-f) and can be explained in the same way. The
low-level upstream phase tilt also appears in the cross
sections of other fields such as the vertical displacement
and pressure (Fig. 4h and 4i). Both the pressure and
vorticity fields are weakened in the presence of Ekman
friction. This can be explained by the “spindown” pro-
cess (e.g., see Pedlosky 1982). That is, the fluid sucked
out by the cyclonic vortex from the Ekman layer must
flow out in the inviscid layer, from the vortex center
to its rim. This outward mass flux will produce vortex
compression and reduce the inward pressure-gradient
force.
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FIG. 4. As in Fig. | except with an Ekman layer included. The Ekman number is 0.01.

6. Concluding remarks

Inertial and frictional effects on stratified hydrostatic
airflow past an isolated warm region are investigated
by linear theories. For an inviscid quasi-geostrophic
flow, there exists a couplet of regions of upward and

.

downward motion in the vicinity of the warm region
in the lower layer. The vertical velocity field is in phase
with the diabatic heating and cooling. As expected, re-
gions of high buoyancy, low pressure and positive vor-
ticity are produced in the vicinity of the warm region.
The wind is deflected cyclonically near the center of
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the warm region. A couplet of divergence and conver-
gence are associated with the upward and downward
motions, respectively. The vertical displacement field
indicates that strong vortex stretching exists near the
center of the warm region, accompanied by two regions
of weak vortex compression upstream and down-

stream. The perturbation pressure reverses its sign at
higher levels, but decays exponentially with height.
With the inertial effects included, the vertical motion
and the vorticity are strengthened. The horizontal wind
experiences a much stronger cyclonic circulation near
the diabatic source. For a flow with a larger Rossby
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0.18000

number O(1) over an isolated warm region, the re-
sponse of the fluid to the thermal forcing is significantly
different from the inviscid quasi-geostrophic case. The
advection effect of the basic flow is dominant. U-shaped
pattern of the disturbance are pronounced. These pat-
terns are associated with the upward propagating in-
ertia-gravity waves. The wind is deflected cyclonically
around the region of positive relative vorticity which
is advected downstream of the center of the warm re-
gion, rather than around the region of low pressure.

The frictional effects are investigated by the addition
of an Ekman friction layer to a quasi-geostrophic flow.
There are three significant features of the resulting dis-
turbance: (i) an upstream—downstream asymmetry, (ii)
an upstream phase tilt in the lower layer, and (iii)
weakening of the positive relative vorticity and the low
pressure. Items (i) and (ii) are explained by the upward
motion and vorticity and the advection of the basic
flow on the disturbance induced by the Ekman friction.
The weakening of the positive relative vorticity and
the low pressure can be explained as the spindown pro-
cess of the interior flow resulting from the Ekman fric-
tion.

In this study, we have only considered prescribed
heating, uniform basic wind and linear response. The
theory can be extended to have a more realistic param-
eterization of the boundary layer physics, which will
allow the feedback from the motion field to the heating.
To apply the theory to the midlatitude, one should
include the baroclinic effect which is treated in a sep-
arate paper. To include the nonlinear response in the
inertia-gravity wave regime, one might want to con-
sider a fully numerical modeling.
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APPENDIX

Derivation of Eq. (46)

The dispersion relation for inertia-gravity waves in
a stagnant Boussinesq fluid is

NZ(k2+12) +f2m2 1/2
=+
b '[ K+ I+ m? ] - @b
With hydrostatic approximation,
[NZ(kZ + 12) +f2m2]l/2
=z —3
2 2 2 2..,271/2
=i[N(k + [°) + f*m?] - (A2)
m
The group velocity can be found,
ow —-Nk
KT m[N*(k* + I*) + f2m?]"/?° (A3)
ow -N?¥
T Iy ey e A )
2 2 2
.. N2(K2 + I?) (A35)

T T am T mANI R+ Py + fom)
For steady waves on a mean flow we replace w with
the intrinsic frequency Uk, so (A2) becomes
N(Kk? + 12112
i ——
(U2k2 _f2)l/2 :
The components of the group velocity in fixed coor-

dinates can be obtained by adding U to (A3) and using
(A6)

m= (A6)

U2[2_ 2
T +{2) ’ (A7)
—l U2k2 . f2
Coy = ————((J( T lzf) ), (A8)
21,2 _ £2N\3/2
G = (Uk* = f*) (A9)

* T UNK(KE+ )72

In a reference frame fixed with earth, wave energy
propagates from the energy source along straight lines
with slopes

X _ Cex

2 e (A10)
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Yolo (AL1)
Z  Cp

Y. (A12)
X Cex ‘

With Egs. (A7) and (A8), we obtain

_Jf_ _ I(U2k2 _fZ)

b k(U2 - (A13)
Using Egs. (A13) and (AIO) lead to Eq. (46).

REFERENCES

Buzzi, A., and S. Tibaldi, 1977: Inertial and frictional effects on ro-

tating and stratified flow over topography. Quart. J. Roy. Meteor. -

Soc., 103, 135-150.

Davies, H. C., and C. Schar, 1986: Diabatic modification of airflow
over a mesoscale orographic ridge: A model study of the coupled
response. Quart. J. Roy. Meteor. Soc., 112, 711-730.

DeMaria, M., 1985: Linear response of a stratified tropical atmosphere
to convective forcing. J. Atmos. Sci. 42, 1944-1959.

Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary
mountain waves. Geofys. Publ. 22, 1-23.

Geisler, J. E., 1981: A linear model of the Walker circulation. J.
Atmos. Sci., 38, 1390-1400.

——, and F. P. Bretherton, 1969: The sea-breeze forerunner. J. At-
mos. Sci., 26, 82-95.

Gill, A. E., 1980: Some simple solutions for heat-induced tropical
circulation. Quart. J. Roy. Meteor. Soc., 106, 447-462.

Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response
of a spherical atmosphere to thermal and orographic forcing. J.
Atmos. Sci., 38, 1179-1196.

Hsu, H., 1987a: A linear study of steady atmospheric flow above a
finite surface heating. J. Atmos. Sci., 44, 186-199.

——, 1987b: Mesoscale lake-effect snowstorms in the vicinity of Lake
Michigan: Linear theory and numerical simulations. J. Atmos.
Sci., 44, 1019-1040.

Jones, W. L., 1967: Propagation of internal gravity waves in fluids
with shear flow and rotation. J. Fluid Mech., 30, 439-448.
Lim, H., and C. P. Chang, 1981: A theory for midlatitude forcing of
tropical motions during winter monsoons. J. Atmos. Sci., 38,

2377-2392.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 46, No. 7

Lin, Y.-L., 1986: Calculation of airflow over an isolated heat source
with application to the dynamics of V-shaped clouds. J. Atmos.
Sci., 43, 2736-2751.

-——, 1987: Two-dimensional response of a stably statified shear flow
to diabatic heating. J. Atmos. Sci., 44, 1375~1393.

——, and R. B. Smith, 1986: Transient dynamics of airflow near a
local heat source. J. Atmos. Sci., 43, 40-49.

Malkus, J. S., and M. E. Stern, 1953: The flow of a stable atmosphere
over a heat island. Part 1. J. Meteor., 10, 30-41.

Olfe, D. B, and R. L. Lee, 1971: Linearized calculation of urban

heat island convection effects. J. Atmos. Sci., 28, 1374--1388.
Pedlosky, J., 1982: Geophysical Fluid Dynamics. Springer-Verlag,
2nd ed., 624 pp.

Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of

mesoscale mountains. J. Atmos. Sci., 42, 977-1003.

Raymond, D. J., 1972: Calculation of airflow over an arbitrary ridge
including diabatic heating and cooling. J. Atmos. Sci., 29, 837-
843.

——, 1986: Prescribed heating of a stratified atmosphere as a model
of moist convection. J. Atmos. Sci., 43, 1101-1111.

Rotunno, R., 1983: On the linear theory of the land and sea breeze.
J. Atmos. Sci., 40, 1999-2009.

Simmons, A. J., 1982: The forcing of stationary wave motion by
tropical diabatic heating. Quart. J. Roy. Meteor. Soc., 108, 503-
534,

Smagorinsky, J., 1953: The dynamical influence of large-scale heat
sources and sinks on the quasi-stationary mean motions of the

" atmosphere. Quart. J. Roy. Meteor. Soc., 79, 342-366.

Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past
an isolated mountain. Tellus, 32, 348-364.

——, 1982: Synoptic observations and theory of orographically dis-
turbed wind and pressure. J. Atmos. Sci., 39, 60-70.

———, 1986: Further development of a theory of lee cyclogenesis. J.
Atmos. Sci., 43, 1582-1602.

——, and Y.-L. Lin, 1982: The addition of heat to a stratified air-
stream with application to the dynamics of orographic rain.
Quart. J. Roy. Meteor. Soc., 108, 353-378.

Smith, R. C., 1957: Air motion over a heated land mass, II. Quart.
J. Roy. Meteor. Soc., 83, 248-256.

Stern, M. E., and J. S. Malkus, 1953: The flow of a stable atmosphere
over a heat island. Part II. J. Meteor., 10, 105-120.

Thorpe, A. J., M. J. Miller and M. W. Moncrieff, 1980: Dynamical
models of two-dimensional downdraughts. Quart. J. Roy. Me-
teor. Soc., 106, 463-484.

Webster, P. J., 1972: Response of the tropical atmosphere to local
steady forcing. Mon. Wea. Rev., 100, 518-541.



