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ABSTRACT

Interactions between gravity waves and cold air outfiows in a stably stratified uniform flow forced by various
combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear
numerical model. It is found that the formation time for the development of a stagnation point or reversed
flow at the surface is not always directly proportional to the Froude number when wave reflections exist from
upper levels, It is shown that a density current is able to form by the wave-outflow interaction, even though
the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting
the flow response to a different location in the characteristic parameter space. A density current is able to form
or be destroyed due to the wave~outflow interaction between a traveling gravity wave and a cold air outflow.
This is proved by performing experiments with a steady-state heat sink and an additional transient heat source.
In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between
two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose
their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress
this new stationary cold air outflow after the collision. The region of upward motion associated with the collision
is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be
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suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

1. Introduction

It has long been recognized that the evaporative
cooling associated with the precipitation falling within
the downdraft of a mesoscale convective cloud line or
an isolated thunderstorm provides a quasi-stationary
heat sink to the environmental flow (e.g., sce Thorpe
et al. 1980). This evaporative cooling tends to produce
dense, diabatically cooled air that descends from above
the cloud base to form cold outflows, which are able
to propagate away from the convective line or the
storm. This gravity-driven outflow is often called a
density current. Simpson (1982) defined a density or
gravity current as the flow of one fluid within another
resulting from the density difference between the two
fluids. Thus, the diabatically forced gravity-driven out-
flow accompanying mesoscale convective downdrafts
may be called a density current. The passage of this
density current on the surface is marked by a pressure
Jump or rapid rise, a rapid change in wind speed and
direction, temperature, and relative humidity com-
monly associated with a propagating gust front. Ahead
of the propagating density current, the air is forced to
ascend and condensation may occur over the gust front
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(Seitter 1986). This lifting process has been considered
to be responsible for triggering new convective cells.
The new convective cell may either join the original
long-lasting single convective cell (Ludlam 1963;
Newton 1966) or become part of the convective system,
which consists of many ordinary, short-lived cells in
tropical squall lines (Zipser 1969). This mechanism is
important in the generation and maintenance of severe
long-lasting moist convection as found from observa-
tional work (e.g., Charba 1974; Goff 1975; Sinclair and
Purdom 1983; Mueller and Carbone 1987) and sim-
ulated in recent numerical modeling work (e.g.,
Mitchell and Hovermale 1977; Thorpe et al. 1982;
Droegemeier and Wilhelmson 1985a,b; Rotunno et al.
1988) on such systems. Therefore, it is essential to un-
derstand the formation of the density current associated
with convective systems.

The formation of a density current is closely related
to the response of a stably stratified flow to the evap-
orative cooling. The latter problem has been investi-
gated mathematically by prescribing either the thermal
forcing (e.g., Smith and Lin 1982; Lin and Smith 1986;
Raymond 1986; Bretherton 1988) or the momentum
forcing (Crook and Moncrieff 1988). However, in or-
der to study the formation of the density current, non-
linear effects must be considered since the density cur-
rent propagates against the basic wind. Recently, Ray-
mond and Rotunno (1989, denoted as RR hereafter)
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studied the response of a uniform stably stratified flow
to prescribed cooling with emphasis on the formation
of the density current. In their nonlinear numerical
modeling study, RR defined four different regimes that
are based on the two nondimensional parameters, F
= |U|/(Qdl)'"? and G = = |U|/Nd, where U is the
basic wind speed, O the buoyancy depletion rate, d the
depth of the cooling region, and / the width of the cool-
ing region. The buoyancy depletion rate, in units of
kelvins per second, defined by RR is equal to §0y/c,To
in the present dimensional form used in this study,
where Q, has the units of joules per kilogram per sec-
ond. Thus, the definition of F becomes

F=Ul/lglQoldl/c,To]"">.

The first nondimensional parameter (F) has been de-
fined by Thorpe et al. (1980) in a numerical investi-
gation of the nonlinear response of an unstratified flow
to prescribed cooling. It is noteworthy to mention that
the F and G parameters in RR are derived from a linear
analysis. In contrast, Lin and Chun (1991) derived F
and G parameters in the more general case in which
the effects of vertical wind shear were quantitatively
explored with the help of a fully nonlinear model. In
addition, based on a number of numerical simulations
and the idealized characteristic function, F, = Fo { G*/
(G*+ G§)}'"?, RR have determined the actual curve
F.(G) in their F-G parameter space. Based on this
curve and under the assumption that the critical value
G. = 1, flow responses are classified into four different
regimes: (1) supercritical to both outflows and gravity
waves (F > F.and G > G.), (ii) supercritical to out-
flows and subcritical to gravity waves (F > F.and G
< G.), (iii) subcritical to both outflows and gravity
waves (F < F.and G < G_), and (iv) subcritical to
outflows and supercritical to gravity waves (F < F.and
G > G.). These responses are illustrated in Fig. 1.

With the above classification, it is found that the
dynamic behavior of the disturbance sometimes re-
sembles a thermally forced gravity wave rather than a
density current (RR). This type of behavior in the flow
response field has also been simulated in numerical
modeling studies investigating the dynamical effects of
vertical wind shear in midlatitude squall line environ-
ments to prescribed thermal forcing (Lin and Chun
1991). The relevance of solitarylike gravity waves as
an additional class of disturbances was discussed by
Dudhia et al. (1987) and by Crook and Moncrieff
(1988). The gravity wave speed also defines a mini-
mum propagation speed for a self-regenerating con-
vective system. Lin and Chun (1991) have extended
the work of RR to a stably stratified shear flow with a
critical level.

In the real atmosphere, waves generated in the layer
near the surface may be reflected back since the fluid is
often structured when latent-heating and vertical wind
shear exist. One example is that when /3 — I3 > =2/ H?,
where H is the height of the lower layer and /, and /,
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are the Scorer parameters of the lower and upper layers,
respectively, lee waves tend to occur for flow over orog-
raphy since the wave energy is trapped in the lower layer
(Scorer 1949). This situation may also occur in the
nocturnal boundary layer. Another example is the wave
ducting mechanism proposed by Lindzen and Tung
(1976). They showed that a stable wave duct adjacent
to the surface becomes an efficient wave reflecting
mechanism when it is capped by a dynamically unstable
shear layer with a critical level. Although Lindzen and
Tung considered a dry and otherwise simple atmosphere,
a similar wave duct may also exist in the large-scale
setting of a convective cloud line.

The interaction between the outflows produced by
two adjacent thunderstorms may play a crucial role in
triggering deep convection. One example is the inter-
action of two thunderstorms observed on 15 June 1973
in the Florida Area Cumulus Experiment (FACE)
(Holle and Maier 1980). The interaction of two thun-
derstorm outflows in a moist shear flow has been in-
vestigated by Droegemeier and Wilhelmson (1985a,b)
using a three-dimensional numerical cloud model. The
wind shear vector was assumed to be perpendicular to
the line containing the two initial outflow-producing
clouds. They found that ambient air in the outflow
collision region is literally “squeezed” out of the way
as the two outflows collide. Some of this air is lifted to
saturation, triggering convective clouds. It also has been
found that the cumulus downdrafts and associated cold
air outflows play a dominant role in the cloud merging
process. That is, one or more new convective cells start
to grow at a cloud bridge that is formed by the merging
of two cold outflows associated with the downdrafts
(Simpson 1980; reviewed by Westcott 1984). This
mechanism has also been found in numerical simu-
lations (Tao and Simpson 1984). In addition, Lin and
Smith (1986) and Lin and Chun (1991) have shown
that internal gravity waves can be triggered by the dia-
batic cooling. Schmidt and Cotton (1990) have also
found that interactions exist between upper- and lower-
level gravity waves in simulating midlatitude squall
lines. However, the dynamical influence that gravity
waves exert on the interaction between two density
currents when wave reflection exists from above de-
serves a fundamental study under the hypothesis that
these thermally forced gravity waves may then interact
with the cold air outflows.

The objective of this study is to investigate the in-
teractions between gravity waves and cold air outflows
in a stably stratified uniform flow forced by prescribed
heat sinks using a two-dimensional nonlinear model
with wave reflections from model top present. The
nonlinear hydrostatic numerical model used in this
study will be described in section 2. The use of a hy-
drostatic system is justified since the overall balances
that determine density current propagation are essen-
tially hydrostatic, although the details of the motion
near the head of a density current are nonhydrostatic
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FIG. 1. Flow responses in different regimes proposed by RR: (a) supercritical relative to both waves and material outflow, (b) subcritical
relative to waves and supercritical relative to material outflow, (c) subcritical relative to both waves and material outflows, and (d) supercritical
relative to waves and subcritical relative to material outflow. Streamlines are shown by solid lines, while the dashed hatching shows regions
of significant vertical motion. Vertical hatching indicates upward motion, while horizontal hatching indicates downward motion. Solid

horizontal hatching shows the cold pool (after RR).

(RR). For the flow studied in this paper, the Scorer
parameter (N/ U) is much greater than the horizontal
wavenumber (k = 2w /l). This allows us to use the
hydrostatic approximation as a first approach to the
problem. In section 3, an anomaly in the formation of
a reversed flow or a stagnation point at the surface due
to the presence of reflected waves in the environment
is presented and discussed. We will show that the crit-
ical curve F.in the F-G parameter space is not always
a simple smooth monotonic curve as found by RR,
based on linear analysis when wave reflection exists
from the upper levels. The effects of cooling-induced
internal gravity waves on the formation of density cur-
rents will be investigated in section 4. The interaction
between gravity waves and cold air outflows will be
presented in section 5. Concluding remarks are given
in the last section.

2. The model

In this study, we adopt a simple two-dimensional
nonlinear numerical model that governs the evolu-
tion of thermally forced, finite amplitude perturba-
tions excited within a hydrostatic, nonrotating,
Boussinesq fluid. The zonal horizontal momentum
equation, thermodynamic energy equation, incom-
pressible continuity equation, and hydrostatic ap-
proximation to the vertical momentum equation
may be written as

u u oU  du I

N TR ) oy AL U

a TG w(az 62) v
(1)
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du  dw
—+——=0, 3
ax 9z (3)
) 0
.2 4
0z %4 (4)

where

t time

x  horizontal coordinate

z  vertical coordinate

u  perturbation horizontal wind speed

w  perturbation vertical wind speed

#  perturbation potential temperature

¢ perturbation kinematic pressure (p/po)

v  coeflicients of Rayleigh friction and Newtonian

cooling
po constant reference density
T, constant reference temperature
6y constant reference potential temperature
U basic horizontal wind speed
N Brunt-Viisild frequency
g  gravitational acceleration
¢, specific heat of air at constant pressure
g diabatic forcing.

The basic-state fields are assumed to be functions of
the vertical coordinate z only, and may be viewed as
being representative of the horizontally averaged syn-
optic-scale setting in which the mesoscale circulations
governed by the numerical model take genesis and
subsequently evolve. The perturbation quantities (u,
w, p, and 6) representing disturbances in the zonal
wind, vertical velocity, pressure, and potential tem-
perature fields are dependent functions of the inde-
pendent variables x, z, and 7.

This coupled set of hydrothermodynamic field
equations is discretized and solved numerically over a
computational domain of horizontal grid interval Ax
and vertical grid interval Az by the method of finite
differencing. Spatial derivatives in the horizontal are
approximated by a fourth-order central differencing
scheme, while spatial derivatives in the vertical are ap-
proximated by a second-order central differencing
scheme. The temporal derivatives are approximated
by the traditional leapfrog method. The spatial and
temporal discretizations employed are similar to those
incorporated in the Drexel Limited Area Mesoscale
Prediction System (LAMPS) (Perkey 1976) and in the
two-dimensional nonlinear model used by Lin and
Chun (1991).

Viscous effects are modeled through the inclusion
of Rayleigh friction and Newtonian cooling terms in
the horizontal momentum and thermodynamic energy
equations, respectively. In this study, the coefficients
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of Rayleigh friction and Newtonian cooling are spec-
ified to be zero. Nonlinear aliasing is removed by ap-
plying a weak five-point numerical smoother derived
from the fourth-order diffusion equation and is applied
at each time step throughout the numerical integration.
Divergence of the solution due to the time splitting
inherent in the leapfrog scheme is reduced through the
incorporation of a three-point temporal filter (Asselin
1972). The upper and lower boundaries of the com-
putational domain place constraints on the disturbance
flow field such that either (i) the flow component nor-
mal to the boundaries vanishes identically, or (ii) the
Sommerfeld radiation condition is obeyed. Under op-
tion (i), it is obvious that either flat, rigid lids bound
the vertical flow domain, or that the flow is constrained
to follow the contours of the low-level orography. The
radiation condition is approximated either by inclusion
of an artificial sponge layer (Klemp and Lilly 1978)
or the numerical algorithm proposed by Klemp and
Durran (1983). Notice that with radiation conditions
applied at both the upper and lower boundaries, dis-
turbances in a continuously stratified, unbounded, hy-
drostatic, nonrotating Boussinesq flow may be inves-
tigated with this model. Wave reflection from the lateral
boundaries is minimized by invoking radiation con-
ditions that are approximated by numerical techniques
originally proposed by Orlanski (1976). Earlier ver-
sions of this model have been generalized by Chun
(1991) to explicitly include moist thermodynamics and
the parameterization of subgrid-scale mixing processes.
The numerical techniques may be summarized as fol-
lows:

(a) fourth-order finite-difference scheme in the
horizontal

(b) second-order finite-difference scheme in the
vertical

{c) leapfrog scheme in time

(d) three options for the upper and lower boundary
conditions: radiation condition, sponge layer, and rigid
lid

(e) open lateral boundary conditions

(f) free-slip condition at the lower boundary

(g) prescribed and parameterized thermal forcings,
or explicit moisture budget

(h) five-point numerical smoothing in both the
horizontal and vertical

(1) three-point numerical smoothing in time.

The prognostic equations, Egs. (1) and (2), with values
for every variable from two previous time steps are
solved first to obtain # and 6. Then w and ¢ are cal-
culated by the diagnostic equations, Egs. (3) and (4).
The x and z grid intervals are taken to be Ax = 3 km
and Az = 150 m, respectively. There are 64 grid points
in x and 41 in z. The time interval Az is 10 s. An
unstaggered grid structure is adopted, which implies
that the horizontal velocity is defined at the lower sur-
face. This model has been rigorously tested against the
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well-accepted linear theories of orographically and
thermally forced stratified flows that are well docu-
mented in the literature, and used in a number of theo-
retically oriented studies (€.g., Lin and Chun 1991).

3. The anomaly in the formation of reversed surface
flow

Since we are interested in studying the dynamical
mechanisms responsible for the formation of reversed
flow when a stably stratified uniform flow passes a re-
gion of prescribed cooling, our first objective is to obtain
the time when the incoming flow reverses its direction
at the surface. As mentioned in the Introduction, the
formation of this reversed flow is essential for the for-
mation of a density current. The cooling region is set
at the center of the domain with a width of 18 km (/)
and extends to a height of 3 km (d) above the surface.
Unlike the cooling function used in RR, we add regions
of weak compensative heating uniformly on both the
upstream and downstream sides of the cooling region
such that the net diabatic forcing is equal to zero at
each vertical level. The addition of the compensative
heating is adopted to avoid the problem of net cooling
and yields a well-posed mathematical problem (Smith
and Lin 1982; Lin and Smith 1986; Bretherton 1988).
The cooling rate is a maximum at the center of the
cooling region. The effect of the weak and widespread
compensative heating on the flow is negligible (Smith
and Lin 1982) and thus does not complicate the F and
G functions. The zonal wind U(z) is specified to be
vertically homogeneous [i.e., constant with height,
U(z) = U, 0 < z < z7] and is directed from right to
left. The formation time of the reversed surface flow
is assumed to be the instant when zero total x-direction
wind speed exists at the surface (i.e., U+ u = 0). The
time limit imposed in the numerical simulations for
the attainment of reversed flow at the surface is either
10 000 s or 36 000 s, that is, 2.78 or 10.0 h, respectively.

Figure 2a shows the time for the formation of a re-
versed surface flow or stagnation point at different
Froude numbers when a rigid lid is placed at zr = 6
km. The rigid lid provides a simple way to represent
the wave reflection from the middle level of the tro-
posphere, which may occur in a real, structured at-
mosphere. A large number of numerical experiments
(570) were performed in the construction of this figure.
The Froude number is defined as Fr = |U|/Nd. The
Froude number of concern here is associated with the
environment, unlike the definitions commonly used
in other studies of density currents, which define the
Froude number associated with the density current
(e.g., Droegemeier and Wilhelmson 1985a). Since N
and d (the depth of the cooling region) are assumed
to be constant (N = 0.01 s™! and d = 3 km) in this
study, the Froude number is a function of U only. The
basic wind velocity varies from —1 to —30 m s~! with
an increment of —1 m s™!, which corresponds to the
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Froude number ranging from 0.033 to 1. Each curve
in the figure represents a certain cooling rate (Q,) that
ranges from —0.1 to —1.0 J kg~' s™! and from —2 to
—10 J kg~'s™' with an increment of ~1 J kg™' s7!,
The prescribed cooling is a simple way to represent the
quasi-stationary evaporative cooling associated with
falling precipitation. A cooling rate of Q, = -1
Jkg~'s™! corresponds to a precipitation rate of 3.5
mm h ™', This precipitation rate is calculated according
to the formula used in Lin (1986), O, = wLRp,./
[2p4(z2 — z)], with L = 2.5 X 10¢ T kg™!, p,, = 10°
kgm™3, p,=1.275kg m >, z, = 3km, and z; = 0 km.

The first curve (leftmost) in Fig. 2a shows different
cases with a cooling rate Qy, = ~0.1 J kg~ 's™!. The
time for forming a reversed surface flow ( for simplicity
denoted as 77) increases rapidly as Fr increases, as ex-
pected. No reversed flow forms within 10 h for Fr
> 0.13 since the cooling is relatively weak. For a cooling
rate of Qy = —0.3 T kg ™! s™!, the flow response is similar
to that for a cooling rate of @y = —0.1 J kg ™' s~ when
Fr is less than 0.3. No reversed flow forms within 10
h when 0.3 < Fr < 0.33 for this particular forcing.
However, for this cooling rate, it is interesting to note
that a reversed surface flow is able to form within 10
h when 0.33 < Fr < 0.43. Within this range, the for-
mation time of the stagnation point does not increase
for an increase in the Froude number (i.e., Tr is not
directly proportional to Fr within this range). This pe-
culiar behavior of the flow response to stationary cool-
ing has an important impact on the formation of the
density current and will be described later.

Similar behavior of the flow response occurs under
a cooling rate of Oy = —0.4 J kg™!s™!, as shown in
Fig. 2a. The turning point, wherein it takes less time
to form a reversed flow or stagnation point as Fr in-
creases, appears to occur at Fr = 0.33. This corresponds
to a basic wind speed of 10 m s™'. The cause of this
turning point will be explained in the next paragraph.
Curves representing cooling rates of g, = —0.7 to —4
J kg~! s7!indicate that the flow response for these var-
ious forcings behave more or less like the flow response
to a cooling rate of Qp = —0.6 J kg™! s™!. That is, it
takes a longer time to form a stagnation point when
the Froude number increases. There exists some critical
Fr below which little effect on the time of flow reversal
is seen for increasing Fr, but above which further in-
creases of Fr quickly prevent flow reversal. Besides, no
turning points exist within 10 h since the time limi-
tation is set to 10 h in these simulations. Compared
with other curves, we may predict that it is possible to
find some turning points in these curves if we increase
the time limit of the simulations. Of course, it becomes
physically unrealistic if one looks for a solution longer
than 10 h since most long-lasting mesoscale convective
systems rarely force any one particular point of the
local environment for this period of time. The curve
representative of Qo = —5 J kg~! s~! has a turning point
at about Fr = 0.87, while the curves representing cool-
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ing rates of @y = —6 and —7 J kg ' s™' have turning
points at Fr = 1. The Tr for the curve representing
Qo= —10J kg~! s~ isabout 2700 s for Fr = 1. It takes
much less time to form a stagnation point in this case
compared to the other cases since the cooling rate is
much stronger.

In summary, T7 is shorter for a larger cooling rate
than that for a smaller one for a fixed Froude numpber.
If we fix the cooling rate and function, 7r does not
always increase as the Froude number or the basic wind
speed increases when wave reflections exist from upper
levels. Figure 2b is similar to Fig. 2a except that a
sponge layer exists in the layer between z = 10 km and
z = 15 km. The prescribed cooling function here is
chosen to be the same as that of RR. However, weak

compensative heating is added. The behavior of the
flow response, as indicated by the curves in Fig. 2b, is
similar to Fig. 2a except no anomaly exists in the regime
of small Froude number (i.e., highly nonlinear) flows.
When a mechanism is provided such that the wave
may be reflected back from a different level, this type
of anomaly in the formation of a reversed surface flow
or stagnation point may occur, too. One example is
the second curve from the left representing the flow
response to a prescribed cooling rate of Qy = —0.2
J kg™ s7' in Fig. 2c in which the rigid lid is placed at
z =4 km.

Figure 3 shows four F-G parameter maps for the
numerical integration time limits of 10 000 s and
36 000 s. Each experiment is indicated by a symbol on
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forms before 10 000 s, and with an asterisk if it does not. (b) Same as (a) except for 36 000 s. (c) Same as (a) except with a sponge layer
added from z = 10 to 15 km, and (d) same as (c¢) except for 36 000 s. Cases CI to C4 are denoted by circles from left to right on curve 3
in (b). Notice the anomaly on curve 3. The parameters G and F are defined in Table 1.

the map. If a reversed surface flow exists before the
end of the prescribed time limit, we indicate the case
with a dot; if not, then with an asterisk. We draw two
curves to separate the experiments into two groups,
with and without reversed flow within the prescribed
time limit. The upper curve connects the points with
the greatest cooling rate among the simulated cases
that do not exhibit the formation of a reversed surface
flow for each corresponding G. The lower curve con-

nects those cases that have the smallest cooling rate
among the cases that do exhibit the formation of a
reversed flow for each corresponding G. The actual
critical curve is located in between these two curves.
In RR, the time integration limit is taken to be 10 000
s. Since N and d are constant, the parameter G is pro-
portional to | U| only. In order to find the actual critical
curve of the F-G map, we have performed a large
number of numerical experiments.
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Figure 3a shows the critical curves on the F-G pa-
rameter map for the time limit of 10 000 s.The critical
curve is smooth and F, increases monotonically to a
value of about 1.25 as G increases from 0 to 1.6 (Fig.
3a), but it then remains about the same for any G
greater than 1.6. If one chooses a time limit of 4000 s,
then the critical curve will be smooth and monotonic
as the idealized function proposed by RR based on
linear analysis. The time limit chosen in Fig. 3b is
36 000 s. Here F, increases almost linearly as G in-
creases from O to 0.7. It becomes a concave curve in
the range 0.7 < G < 1.28. The curve then falls again
until G equals 1.76 and then rises gradually for any G
greater than this value. As shown in Fig. 3, one can
always find a critical cooling rate for every basic wind
speed (or equivalently G, because G = w | U|/Nd and
w/Nd is kept constant). For a fixed value of G and F
< F,, a stagnation point or reversed surface flow exists.
This indicates that if the cooling rate is larger than the
critical cooling rate for a fixed basic wind speed (con-
stant G'), then the flow response exhibits the existence
of a stagnation point. Unlike that in RR, the critical
curve (F,) for a time limit of 36 000 s is neither smooth
nor monotonic with G when wave reflections exist from
above. Notice that the simulations for a fixed Qp, N,
d, and [ are colinear with a slope of Nd/(g| Q| dl/
¢,To)'"?. This indicates that the flow response may
change regimes from subcritical to supercritical, then
back to subcritical flow again with respect to outflows
as the basic wind speed increases. One example is the
third curve (labeled as 3) from the upper right corner
in Fig. 3b, which represents a cooling rate of Oy = —0.3
Jkg7's™'. Notice that this curve corresponds to the
intersection of the third curve and the horizontal line
at t = 36 000 in Fig. 2a since G is equal to «wFr. This
type of anomaly is also evident at an earlier time for
a larger cooling rate such as the curve representing a
cooling rate of Oy = —0.4 J kg™!s™! in Fig. 2a. We
choose to make simulations based on curve 3 and a
time limit of 10 h because it is easier to elucidate the
interaction of gravity waves and outflows for a longer
time. If one looks at the short time behavior, that is, ¢
< 36 000 s, then this anomalous flow response evi-
dently does not occur.

As mentioned in the Introduction, RR have deter-
mined the actual curve F (G) in their F-G parameter
map, based on numerical simulations and the idealized
characteristic function, F, = Fo{G*/(G* + G§)}'/3.
We have repeated their calculations and find the actual
curve for the case when the time limit of the numerical
simulations is 10 000 s. Based on this analysis, some
minor errors in the published values have been ob-
served in the calculations of F in their Table 1, which
yield a slightly different curve of F.(G) than is indicated
by their Fig. 4. If we use these corrected values of F
from those listed in their Table 1, the G, in their Eq.
(11) will have a value of 2.6, instead of 1.65, in order
to give the critical function F.(G). However, the gen-
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eral pattern of their idealized curves are very similar
to the curves presented in Figs. 3c and 3d, and the
minor discrepancy between the originally published
values and the corrected values does not affect the gen-
eral conclusions offered in that paper.

4. Effects of gravity waves on the formation of the
density current

In order to study the mechanism associated with the
abnormal behavior of the critical curve and its dynam-
ical influence upon the formation of reversed flow or
a stagnation point at the surface when wave reflection
from aloft occurs, we have performed a number of nu-
merical experiments with a fixed cooling rate of Q,
= —0.3J kg~! s7! and the rigid-lid condition imposed
at the model top. These cases correspond to curve 3
(a straight line) in Fig. 3b. This curve intersects the
critical curve ( F,) three times, since F, is not monotonic
with increasing G or | U] when both N and d are fixed.
The numerical experiments performed in this section
are forced by cooling only. They are summarized in
Table 1 and denoted by circles on curve 3 in Fig. 3b.

Figure 4 (C1) shows the time evolution of the re-
sponse of a stably stratified, uniform flow over a region
of stationary cooling of physical dimensions / = 18 km
and d = 3 km. As mentioned earlier, compensative
heating is added to avoid the net cooling problem. The
basic wind velocity and cooling rate are —8 m s~! and
—0.3J kg~!s™!, respectively. Notice that the basic wind
blows from right to left. The time evolution of the total
horizontal wind velocity at z = 0 is shown in Fig. 4a.
The nondimensional flow parameters G and F are 0.84
and 0.96, respectively. The reversed surface flow forms
at about 7 = 4 h as can be seen from the area of positive
total wind velocity increasing smoothly with time at
any instant thereafier. The region of maximum hori-
zontal wind velocity then propagates to the upstream
(right) side of the cooling region, although the tem-
perature gradient along the cold air outflow at this time

TABLE 1. Summary of numerical experiments with one heat sink.

Case
Cl1 C2 C3 C4
Figure
4 5 6 7
U (ms™) -8 —9.5 —11 —13
Qo kg's™) -0.3 —0.3 —0.3 -0.3
{ (km) 18 18 18 18
d (km) 3 3 3 3
N (™ 0.01 0.01 0.01 0.01
Fr 0.27 0.32 0.37 043
G 0.84 1.00 1.15 1.36
F 0.96 1.14 1.32 1.56

*Fr = |U|/Nd, G = x|U|/Nd, F = |U|/lg| Qoldlfc,To]*
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F1G. 4. (C1) Time evolution of the response for a stably stratified uniform flow passing over stationary
cooling (/ = 18 km, d = 3 km). The basic wind velocity and cooling rate are —8 ms~'and —0.3 J kg ™' s7'.
Other flow parameters are listed in Table 1. Four fields of time evolution are shown: (a) total horizontal
wind velocity (U + u)at z = 0, (b) wat z = 150 m, (c) 8 at z = 0, and (d) 3D plot of # at z = 0. The

1s still not sharp (Fig. 4c). The distinction between a
cold air outflow and a density current seems rather
arbitrary. Crook and Moncrieff (1988) identify a dif-
ference between density currents and solitary gravity
waves in terms of reattachment of the dividing stream-
line passing the stagnation point. That is, a solitary
gravity wave can exhibit a reversed flow but the stag-
nation streamline can reattach (Dudhia et al. 1987).
On the other hand, Lin and Chun (1991) defined a
density current as a cold air outflow propagating against
the basic wind. This density current is also evident from
the vertical wind field (Fig. 4b), the perturbation po-
tential temperature field (Fig. 4c), and the perturbation
horizontal wind field (Fig. 4d). The propagation speed
of this density current is estimated to be about 2 m s,
For a flow with the same cooling rate, Brunt-Véiisild
frequency, cooling depth, and whose basic wind speed
is less than 8 m s, a density current is able to form
within 10 h since the pool of cold, dense air produced
by the cooling has enough momentum to push against

the relatively weak basic flow. This is also depicted in
Fig. 3b. The frontal speed can be estimated from the
response in a quiescent fluid (not shown) and is found
to be about 5.3 m s~'. The criterion for the formation
of the density current is not simply determined by the
relative magnitudes of the outflow speed, which is lin-
early proportional to (g|Qo| d!/c,T,)"?, and the bdsic
wind speed since the flow is highly nonlinear. In an
unstratified flow, Thorpe et al. (1980) found that F, is
approximately equal to 1.4. It is also evident from Fig.
4a that two weak cooling-induced gravity waves exist,
propagating in both the upstream and downstream di-
rections. The upstream-propagating wave has a slower
speed than the downstream wave since it propagates
against the basic wind.

Figure 4b shows the time evolution of the vertical
wind velocity at z = 150 m. Before the stagnation point
forms at about ¢ = 4 h, upward motion exists on the
upstream side and downward motion on the down-
stream side of the cooling region. As time proceeds,
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FiG. 4. (Continued) vertical structures with streamlines superimposed are shown in (e) 6 at 5 h, (f) wat
5 h, (g) # at 10 h, and (h) w at 10 h. The flow is subcritical to both outflows and gravity waves. The
propagating wave mode, wave I, is denoted by I in (f). The contour intervals for (a), (b), (¢), (e), (f),
(g),and (h)are I ms™, 0.0l ms™', 0.6 K,02K,0.04 ms™, 0.6 K, and 0.05 m s, respectively.

the region of upward motion splits from the region of
downward motion and propagates upstream. This split
is associated with the development of the density cur-
rent. Since the vertical velocity field shown in the figure
is close to the surface, it is proportional to the low-
level convergence field. Figure 4b also indicates that
the density current is associated with the extremely
strong convergence. Figure 4c¢ shows the time evolution
of the perturbation potential temperature field at the
surface. The relatively cold area spreads far downstream
of the cooling region as time proceeds. A very strong
temperature gradient develops along the cold pool,
which is much stronger than that associated with the
cold air outflow in a weaker basic flow (Lin and Chun
1991). Figure 4d shows a three-dimensional plot of the
time evolution of perturbation horizontal wind velocity
at the surface. This plot provides a convenient way to
view the time evolution of the associated subsequent
wave structure and propagation. The scale at the origin

is the amplitude of the perturbation horizontal velocity,
which is plotted for comparison of wave magnitudes
for different cases. In Fig. 4d, the strongest wave is
located at the head of the density current. It can be
seen that a weak gravity wave does propagate upstream,
while another one propagates downstream. These two
cooling-induced gravity waves correspond to those
shown in Figs. 4a and 4b.

The vertical structure of the flow response at t = 5
h and ¢ = 10 h for the present case (C1) is shown in
Figs. 4e-h. The superimposed 6 and streamline fields
are shown in (e) and (g), while the vertical velocity
and streamline fields are shown in (f) and (h). From
Fig. 4a, the stagnation point or reversed flow is just
beginning to form at about ¢ = 4 h. The temperature
gradient at the head of the density current (x = 9.6
km) at ¢ = 5 h is sharper than that at earlier times (Fig.
4e). Both the potential temperature field and the ver-
tical velocity field indicate that the flow structure has
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a vertical wavelength of about 6 km, which is roughly
2 d as mentioned in RR. Near the surface, a portion
of the cold air produced by the stationary cooling is
advected downstream in a very shallow layer with a
depth of about 1 km. It is interesting to note that not
all of the prescribed cooling region (0 < z < 3 km) is
occupied by the cold air. The upper portion of the pre-
scribed cooling region (2 km < z) is overcome by the
adiabatic warming produced by the descending air. The
effective cooling is reduced by this warm air. The
structure of the vertical velocity field (Fig. 4f) exhibits
the same vertical wavelength as evidenced in the per-
turbation potential temperature field. A region of strong
upward motion with a maximum speed of about 0.16
m s~ is produced near the head of the upstream cold
air outflow, which is due to the convergence generated
by the basic wind and the cold air outflow. On the
downstream side of the prescribed cooling region, there
exists downward motion. A counterclockwise rotor
forms near the surface at the center of the cooling re-
‘gion, which is associated with the density current. The
phase of the vertical velocity at z = 3.6 km is just op-
posite to that in the lower layer. This disturbance may
be regarded as the thermally forced stationary mode of
the gravity waves generated by the cooling. On the far
upstream side at x = 72 km, a weak disturbance exists
that is associated with an upstream-propagating wave.
This wave may be regarded as the propagating mode
of the thermally forced gravity waves generated by the
prescribed cooling and is defined hereafter as wave L.
It exhibits a larger vertical wavelength of roughly 8 km.
Therefore, this case may be classified as subcritical to
both outflows and gravity waves since both the outflow
and gravity wave are able to propagate freely upstream.

At ¢t = 10 h, the density current is well developed
and has propagated upstream a distance of x = 45 km
(Fig. 4g). Unlike the potential temperature field at ¢
= 5 h, the cold air associated with the density current
is wholly confined in a very shallow layer with a depth
of about 1 km. This is because the cold air produced
by the cooling is able to descend to the lower layer and
propagate to both the upstream and downstream sides.
Compared with this cold region, the temperature per-
turbation in the upper layer is very weak. The vertical
velocity field (Fig. 4h) depicts two physically distinct
waves. The stationary gravity wave mode near the
cooling center, with a vertical wavelength of 6 km, is
produced by the prescribed cooling, while the forced
gravity wave near the density current, with a larger
vertical wavelength, is produced by the density current.
These two wave modes have also been found in a shear
flow case as studied by Lin and Chun (1991). The
gravity wave associated with the density current is
much stronger than that associated with the cooling
region since the low-level convergence near the density
current is much stronger. The gravity wave forced by
the density current should not be confused with the
propagating wave mode (wave 1) discussed earlier and

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 50, No. 22

in RR. At ¢ = 10 h, wave I has already propagated
beyond the right boundary of the computational do-
main.

Figure 5 shows the time evolution of the response
for a case (C2) similar to case C1 (Fig. 4) except with
U= —-9.5ms~'. As can be seen from Fig. 5a, no pos-
itive total horizontal wind velocity exists in 10 h. That
is, no reversed surface flow or stagnation point forms
at the surface within 10 h. Therefore, no density current
is able to form upstream. In this flow regime, the cold
air outflow is overcome by the basic wind advection
due to the wave reflection from the top boundary. No-
tice that a density current is able to form in a corre-
sponding case with a sponge layer located at z = 10 to
15 km (Figs. 2b and 3d). The cold air produced by
the evaporative cooling becomes almost stationary, as
can be seen from Fig. Sc. However, the gravity waves
are able to propagate both upstream and downstream
(Figs. Sb and 5d). Obviously, this case belongs to the
regime of critical to outflows and subcritical to gravity
waves. In fact, this case corresponds to (G, F) = (1.00,
1.14). The upstream-propagating gravity wave (wave
I) is more evident in this case (Fig. 5b) than that in
the last case (Fig. 4b).

The corresponding vertical structures of the distur-
bances at t = 5 h and ¢t = 10 h are shown in Figs. 5e—
f. Atz = 10 h, the downstream outflow near the surface
has already been advected out of the computational
domain (Fig. Se), while the cold region located near
the cooling center is compensated by the adiabatic
warming associated with stronger downward motion
(Fig. 5f). The four-cell pattern of the vertical velocity
shown in case C1 (Fig. 4f) becomes more widespread
and is advected farther downstream in the present case
(Fig. 5f). There exists no strong vertical motion in the
vicinity of the cooling near the surface. This is because
the flow is no longer subcritical to outflows. This is
consistent with the finding of RR that strong updrafts
only occur in the case of subcritical to outflows and
supercritical to gravity waves. At (x, z) = (82, 2 km),
a region of upward motion can be found. This upward
motion is associated with the propagating wave mode
(wave I) as found in the previous case, except that it
propagates upstream at a slower speed since the basic
wind is stronger. In the vicinity of the cooling region,
the stationary wave mode is dominated by downward
motion. Therefore, this case may be classified to be
critical to outflows and subcritical to gravity waves.

If we increase the basic wind velocityto —11 m s},
the response is quite dramatic. The result is shown in
Fig. 6 (C3). The nondimensional flow parameters are
(G, F) = (1.15, 1.32). Since the wind speed is larger
than the previous case, one would anticipate that a
reversed flow and subsequently a density current would
not be able to form, according to the theory of RR.
Surprisingly, a reversed flow is able to form (Figs. 6a
and 6b). A density current then forms at about the
same time and propagates farther upstream as time
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FIG. 5. (C2) Same as Fig. 4 except with U = —9.5 m s™'. The § and w fields are only depicted at 10 h
[(e) and (f)]. The flow is critical to outflows but is subcritical to gravity waves. Notice that no density
currents form in 10 h even though the basic wind is stronger than that in case C1. The contour intervals for

(a), (b), (c), (e), and (f) are 0.4 m s™', 0.004 m s™', 0.1 K, 0.1 K, and 0.04 m s, respectively.
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